Proof:

Invoking the uniform continuity of $ f$ with $ \varepsilon=2$, there exists $ \delta > 0$ such that

$\displaystyle \Vert x-y\Vert < \delta \Rightarrow \vert{ f(x) - f(y)}\vert < 2\,
$

which in turn implies that $ f(x) \neq -f(y).$ Now choose $ n\in \mathbb{N}$ such that $ n^{-1}\Vert x\Vert < \delta$ for all $ x \in X$ which is possible since $ X$ is compact. This $ n$ is now fixed for the rest of the discussion. For $ x \in X$ and $ j=0,1,\dots ,{n-1}$

$\displaystyle \Big\Vert\frac{j}{n}x - \frac{(j+1)}{n}x\Big\Vert < \delta,
$

whereby,

$\displaystyle f(\frac{j+1}{n}x) \neq -f(\frac{j}{n}x).
$

From this we conclude that the function given by

   lg$\displaystyle \Big(\frac{f(\frac{j+1}{n}x)}{f(\frac{j}{n}x)}\Big),\quad x \in X
$

is continuous with respect to $ x$. We now claim that

$\displaystyle {\tilde f}(x) = t_0 + \sum_{j=0}^{n-1}$   lg$\displaystyle \Big(\frac{f(\frac{j+1}{n}x)}{f(\frac{j}{n}x)}\Big)
$

is the required continuous function. Observe that lg$ (1) =0,\; \tilde{f}(0)=t_0$ and

   ex$\displaystyle {\tilde f}(x) = ($ex$\displaystyle (t_0)) \cdot \frac{f(\frac{1}{n}x)}{f(0)} \cdot
\frac{f(\frac{2}{n}x)}{f(\frac{1}{n}x)} \cdots \frac{f(\frac{n}{n}x)}{f(\frac{n-1}{n}x)}
= f(x).
$

Turning to the proof of uniqueness of the lift $ {\tilde f}$, suppose $ {\tilde f}_1, {\tilde f}_2 : X \longrightarrow \mathbb{R}$ are two continuous functions such that $ {\tilde f}_1(0) = {\tilde f}_2(0) = t_0$ and ex$ {\tilde f}_1(x) =$   ex$ {\tilde f}_2(x) = f(x). $ Then ex$ ({\tilde f}_1(x) - {\tilde f}_2(x)) = 1,$ which implies $ {\tilde f}_1(x) - {\tilde f}_2(x) \in \mathbb{Z}$ (see note below). Since both functions are continuous, agree at the origin and $ X$ is connected, we conclude that

$\displaystyle {\tilde f}_1(x) \equiv {\tilde f}_2(x). \eqno\square
$



nisha 2012-03-20