Note:

The properties of the exponential function used here must be established using power series expansions. Specifically prove using power series the following:
(i)
ex$ (z_1+z_2) =$   ex$ (z_1) \cdot$   ex$ (z_2)$
(ii)
There exists a unique positive real root of $ \cos(x) =0$ in $ [0,2]$ (via the real power series for the cosine function) and we denote this root by $ \pi/2$.
(iii)
$ \cos(2\pi +x) = \cos x,\; \sin (2 \pi +x)= \sin x$ (using addition formula for $ \sin$ and $ \cos$ following (i) )
(iv)
If $ \cos x=\cos y,\; \sin x=\sin y$ then there exists $ k \in \mathbb{Z}$ such that $ x-y = 2\pi ik.$


nisha 2012-03-20