Example 8.5:

Let $ X$ be a topological space and $ C(X)$ be the set of all continuous functions from $ X$ to the real line (with its usual topology). Then $ C(X)$ is a commutative ring with unity. Suppose that $ f : X \longrightarrow Y$ is a continuous map between topological spaces then we define $ f^{*}$ to be the map
$\displaystyle f^{*} : C(Y) \longrightarrow C(X)$      
$\displaystyle \phi\mapsto \phi\circ f\phantom{XX}$      

It is obvious to see that $ f^{*}$ is a ring homomorphism and id$ _X^{*} =$   id$ _{C(X)}$. Further, $ (g\circ f)^{*} = f^{*}\circ g^{*}$ for $ f \in$   Mor$ (X, Y)$ and $ g \in$   Mor$ (Y, Z)$. We thus have a contravariant functor Top$ \longrightarrow$   Rng sending the object $ X \in$   Top to the object $ C(X) \in$   Rng and assigning to $ f \in$   Mor$ (X, Y)$ the ring homomorphism $ f^{*} \in$   Mor$ (C(Y), C(X))$.

nisha 2012-03-20