Example 8.3:

Between the categories $ {\bf Gr}$ and $ {\bf AbGr}$ we define a map as follows. For $ G \in {\bf Gr}$ we denote by $ A_{G}$ its abelianization namely the quotient group:

$\displaystyle A_{G} = G/[G, G].
$

The quotient is an abelian group and so belongs to $ {\bf AbGr}$. For example if we take $ G = S_n$ the symmetric group on $ n$ letters then its abelianization is the cyclic group of order two (why?). If $ G$ and $ H$ are two groups and $ f:G\longrightarrow H$ is a group homomorphism then
$\displaystyle \eta_{H}\circ f : G \longrightarrow H/[H, H]$      

is a group homomorphism into an abelian group where $ \eta_H$ is the quotient map $ H \longrightarrow H/[H,H]$. The kernel of $ \eta_{H}\circ f$ must contain all the commutators and so defines a group homomorphism
$\displaystyle \tilde{f} : G/[G, G] \longrightarrow H/[H, H]$      
$\displaystyle \overline{x} \mapsto \overline{f(x)},\phantom{XXX}$      

where the bar over $ x$ denotes the residue class of $ x$ in the quotient. Thus to each object $ G$ of $ {\bf Gr}$ we have assigned a unique object of $ {\bf AbGr}$ namely the abelianization $ G/[G, G]$ and to each morphism $ f \in$   Mor$ (G, H)$ we have associated a unique morphism $ \tilde f$. The following properties are quite clear:

(i) If $ f \in$   Mor$ (G, H)$ and $ g \in$   Mor$ (H, K)$ then

$\displaystyle \widetilde{g\circ f} = \tilde g \circ \tilde f
$

(ii) For any group $ G$,

$\displaystyle \widetilde{\mbox{id}_G} = \mbox{id}_{G/[G,G]}
$

This is an example of a covariant functor from one category to another.
nisha 2012-03-20