Module 2 : Traffic Measurement Procedures
Lecture 08 : Automated Traffic Measurement
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21
 

Vehicle Occupancy

Vehicle occupancy measurement is an important part of transportation congestion management and it is used for evaluating the efficiency of road system, High Occupancy Vehicle (HOV) lanes or particular congestion reduction programs. The measure occupancy is a function of speed and length of individual vehicle and thus, it could consider the effects of varying vehicle length and speed. Hence, it can be considered as a logical substitute of density. In other words, occupancy, based on practical consideration, is defined as the percentage of time the detection zone is occupied by the vehicles. Therefore, occupancy measured using detectors depends on the length of detection zone, each detector type has a differing zone of influence (detector length) and the zone of influence is effectively added to vehicle length. Hence, the measured occupancy may be different for different detection zones even for the same site having identical traffic, depending on the size and nature of the detectors. Development of intelligent systems that extract traffic density and vehicle classification information from traffic surveillance systems is crucial in traffic management. It is important to know the traffic density of the roads real time especially in HOV lanes for effective traffic management. Time estimation of reaching from one location to another and recommendation of different route alternatives using real time traffic density information are very valuable for metropolitan city residents.

Travel Time

Travel time can be defined as the period of time to transverse a route between any two points of interest. It is a fundamental measure in transportation. Travel time is also one of the most readily understood and communicated measure indices used by a wide variety of users, including transportation engineers, planners, and consumers. Travel time data is useful for a wide range of transportation analyses including congestion management, transportation planning, and traveler information. Congestion management systems commonly use travel time-based performance measures to evaluate and monitor traffic congestion. In addition, some metropolitan areas provide real-time travel time prediction as part of their advanced traveler information systems (ATIS). Travel time data can be obtained through a number of methods. Some of the methods involve direct measures of travel times along with test vehicles, license plate matching technique, and ITS probe vehicles. Additionally, various sensors (e.g. inductance loop detectors, acoustic sensors) in ITS deployment collect a large amount of traffic data every day, especially in metropolitan areas. Such data can be used for travel time estimation for extensive applications when direct measurements of travel times are not available.

Delay

The delay defines as ``The additional travel time experienced by a driver, passenger, or pedestrian''. Delay is thus the difference between an ``ideal'' travel time and ``actual'' travel time. Since the definition of delay depends on a hypothetical ``ideal travel time'', delay is not always directly measurable in the field. If the ideal travel time is defined as off-peak travel time, then the measured delay is difference between the actual measured travel time during peak period, and the actual measured travel time during off-peak period. If the ideal travel time is defined as travel at the posted speed limit, then the delay cannot be directly measured in the field. It is estimated by subtracting the hypothetical travel time at the posted speed limit from the measured mean travel time in the field.