next up previous
: Difference operators : lect2 : lect2

Difference Notation

It is conventional to define the forward difference $ \Delta f(x_{o})$ as

$\displaystyle \Delta f(x_{0})= f(x_{0}+h)-f(x_{0})$

If also $ \Delta f(x_{0}+h)=f(x_{0}+2h)-f(x_{0}+h)$ is known, then the second forward difference associated with the point $ x_{0}$ is defined as
$\displaystyle \Delta^{2}f(x_{0})$ $\displaystyle =$ $\displaystyle \Delta f(x_{0}+h)-\Delta f(x_{0})$  
  $\displaystyle =$ $\displaystyle f(x_{0}+2h)-2f(x_{0}+h)+f(x_{0})$  

and succeeding forward differences are defined by iteration. More generally, we introduce the definitions

$\displaystyle \Delta f(x)=f(x+h)-f(x)$

$\displaystyle \Delta^{r+1}f(x)=
\Delta^{r}f(x+h)-\Delta^{r}f(x) \quad ; r=1,2,
----$

where h is the spacing.

We now define the backward difference $ \nabla
f(x_{0})$ as

$\displaystyle \nabla f(x_{0})=f(x_{0})-f(x_{0}-h)$

and higher order backward differences are defined by iteration as

$\displaystyle \nabla^{r+1}f(x_{0})=\nabla^{r}f(x_{0})-\nabla^{r}f(x_{0}-h)$

We also define Central difference $ \delta
f(x_{0})$ as

$\displaystyle \delta f(x_{0})=f(x_{0}+\frac{1}{2}h)-f(x_{0}-\frac{1}{2}h)$

and higher order central differences

$\displaystyle \delta^{r+1}f(x_{0})=\delta^{r}f(x_{0}+\frac{1}{2} h)-\delta^{r}f(x_{0}-\frac{1}{2} h);r=1,2,---$

>From these definition, one can also observe

$\displaystyle \Delta f_{0}=\delta f_{\frac{1}{2}}=\nabla f_{1}$

$\displaystyle \Delta f_{1}=\delta f_{\frac{3}{2}}=\nabla f_{2}$

$\displaystyle \Delta^{2}f_{0}=\delta ^{2}f_{1}=\nabla^{2}f_{2}$




next up previous
: Difference operators : lect2 : lect2
root 平成18年1月31日