Modified Regula Falsi Method | ||||
---|---|---|---|---|
Iteration no. | ||||
0 | 1.0000000000 | 2.0000000000 | 1.4782608747 | -2.2348976135 |
1 | 1.4782608747 | 2.0000000000 | 1.7010031939 | 0.5908976793 |
2 | 1.4782608747 | 1.7010031939 | 1.6544258595 | -0.0793241411 |
3 | 1.6544258595 | 1.7010031939 | 1.6599385738 | -0.0022699926 |
4 | 1.6599385738 | 1.7010031939 | 1.6602516174 | 0.0021237291 |
5 | 1.6599385738 | 1.6602516174 | 1.6601003408 | 0.0000002435 |
Modified Regula Falsi Method | ||||
---|---|---|---|---|
Iteration no. | ||||
0 | 0.5000000000 | 1.5000000000 | 0.8773435354 | 2.1035263538 |
1 | 0.5000000000 | 0.8773435354 | 0.7222673893 | 0.2828366458 |
2 | 0.5000000000 | 0.7222673893 | 0.6871531010 | -0.1967970580 |
3 | 0.6871531010 | 0.7222673893 | 0.7015607357 | 0.0026464546 |
4 | 0.6871531010 | 0.7015607357 | 0.7013695836 | 0.0000239155 |
5 | 0.6871531010 | 0.7013695836 | 0.7013661265 | -0.0000235377 |
6 | 0.7013661265 | 0.7013695836 | 0.7013678551 | -0.0000003363 |
Secant Method: Like the Regula Falsi method and the Bisection method this method also requires two initial estimates of the root of f(x)=0 but unlike those earlier methods it gives up the demand of bracketing the root. Like in the Regular Falsi method, this method too retains the use of secants throughout while tracking the root of f(x)=0. The secant joining the points is given by
Repeat the
process with
and so on
till you get a s.t.
These
results are tabulated below:
Secant Method | ||||
---|---|---|---|---|
Iteration no. | ||||
0 | 1.0000000000 | 2.0000000000 | 1.4782608747 | -2.2348976135 |
1 | 2.0000000000 | 1.4782608747 | 1.6198574305 | -0.5488323569 |
2 | 1.4782608747 | 1.6198574305 | 1.6659486294 | 0.0824255496 |
3 | 1.6198574305 | 1.6659486294 | 1.6599303484 | -0.0023854144 |
4 | 1.6659486294 | 1.6599303484 | 1.6600996256 | -0.0000097955 |
Geometrical Visualization of the root tracking procedure by secant
method for the above example: