next up previous
Next: Modified Regular Falsi method: Up: ratish-1 Previous: Bracketing Methods:

(b)False position or Regula Falsi method:

Bisection method converges slowly. Here while defining the new interval $ [a_{n}, b_{n}]$ the only utilization of the function $ 'f(x)'$ is in checking whether $ f(a_{n})f(b_{n})<0$ but not in actually calculating the end point of the interval. False position or Regular Falsi method uses $ f(x)$ not only in deciding the new interval $ [a_{n}, b_{n}]$ as in bisection method but also in calculating one of the end points of the new interval. Here one of end points of $ [a_{n}, b_{n}]$ say $ w$ is calculated as a weighted average defined on previous interval $ [a_{n-1},\quad b_{n-1}]$ as:

$\displaystyle w=\frac{\vert f(b_{n-1})\vert.a_{n-1}+\vert f(a_{n-1})\vert.b_{n-1}}{\vert f(b_{n-1})\vert+\vert f(a_{n-1})\vert}$

$\displaystyle =\frac{f(b_{n-1})a_{n-1}-f(a_{n-1})b_{n-1}}{f(b_{n-1})-f(a_{n-1})}$

( $ \because f(a_{n-1}),f(b_{n-1})$ have opposite signs).
The algorithm for computing the root of function $ f(x)$ by thus method is given below.

Algorithm:
Given a $ f(x)$ continuous on an interval $ [a,b]$ satisfying the criteria $ f(a)f(b)<0$, carry out the following steps to find the root $ \xi$ of $ f(x)$ in $ [a,b]$:
(1) Set $ a_{0}=a,\quad b_{0}=b$
(2) For n = 0,1,2.... until convergence criteria is satisfied do:
(a) Compute      $ \displaystyle {w=\frac{[f(b_{n})a_{n}-f(a_{n})b_{n}]}{[{f(b_{n})-f(a_{n})}]}} $
(b) If $ (f(a_{n})f(w) \leq 0)$    Then

set $ a_{n+1}=a_{n}\quad ;\quad b_{n+1}=w$
otherwise
set $ a_{n+1}=w \quad;\quad b_{n+1}=b $
Note:
Use any one of the convergence criteria discussed earlier under bisection method. For the sake of carrying out a comparative we will stick both to the same convergence criteria as before i.e. $ \vert f(e_{sn})\vert=\vert f(w)\vert<\epsilon=10^{-6}$(say) and to the example problems.

Example:
Solve $ 2x^{3}-2.5x-5=0$ for the root in the interval [1,2] by Regula-Falsi method:

Solution: Since $ f(1)\, f(2)=-33<0$, we go ahead in finding the root of given function f(x) in [1,2].
Set $ a_{0}=1,\quad b_{0}=2$.

$\displaystyle w=\frac{f(b_{0})a_{0}-f(a_{0})b_{0}}{f(b_{0})-f(a_{0})}=\frac{f(2).1-f(1).2}{f(2)-f(1)}=1.47826087$

$\displaystyle f(w)=f(1.47826.087)=-2.23489761$

$\displaystyle \because f(a_{0})\quad f(w)=(-5.5)\times(-2.23489761)>0$





set $ a_{1}=w=1.47826087\quad;\quad b_{1}=b_{0}=2$
$ \because \quad \vert f(w)\vert>\varepsilon=10^{-6}$ proceed with iteration.
Iteration details are provide below in a tabular form:
    Regula Falsi Method    
         
Iteration no. $ a_n$ $ b_n$ $ W_n$ $ f(W_n)$
0 1.0000000000 2.0000000000 1.4782608747 -2.2348976135
1 1.4782608747 2.0000000000 1.6198574305 -0.5488323569
2 1.6198574305 2.0000000000 1.6517157555 -0.1169833690
3 1.6517157555 2.0000000000 1.6583764553 -0.0241659321
4 1.6583764553 2.0000000000 1.6597468853 -0.0049594725
5 1.6597468853 2.0000000000 1.6600278616 -0.0010169938
6 1.6600278616 2.0000000000 1.6600854397 -0.0002089010
7 1.6600854397 2.0000000000 1.6600972414 -0.0000432589
8 1.6600972414 2.0000000000 1.6600997448 -0.0000081223
Note : One may note that Regular Falsi method has converged faster than the Bisection method.

Geometric Interpretation of Regula Falsi Method:

Let us plot the polynomial considered in the above example and trace $ w$, its movement and new intervals $ [a_{n}, b_{n}]$ with iteration. From the figure() one can verify that the weighted average

$\displaystyle w=\frac{f(b_{n})a_{n}-f(a_{n})b_{n}}{f(b_{n})-f(a_{n})}$

is the point of intersection of the secant to $ f(x)$, passing through points $ (a_{n},f(a_{n}))$ and $ (b_{n},f(b_{n}))$ with the x-axis. Since here $ f(x)$ is concave upward and increasing the secant is always above $ f(x)$. Hence, $ w$ always lies to the left of the zero. If $ f(x)$ were to be concave downward and increasing, $ w$ would always lie to the right of the zero.

Example:
Solve $ 5 \sin^{2}x-8\cos^{5}x=0$ for the root in the interval [0.5,1.5] by Regular Falsi method.

    Regula Falsi Method    
         
Iteration no. $ a_n$ $ b_n$ $ W_n$ $ f(W_n)$
0 0.5000000000 1.5000000000 0.8773435354 2.1035263538
1 0.5000000000 0.8773435354 0.7222673893 0.2828366458
2 0.5000000000 0.7222673893 0.7032044530 0.0251714624
3 0.5000000000 0.7032044530 0.7015219927 0.0021148270
4 0.5000000000 0.7015219927 0.7013807297 0.0001767781
5 0.5000000000 0.7013807297 0.7013689280 0.0000148928
6 0.5000000000 0.7013689280 0.7013679147 0.0000009526



Subsections
next up previous
Next: Modified Regular Falsi method: Up: ratish-1 Previous: Bracketing Methods:
root 2006-02-07