Solutions in terms of Power Series

Consider a linear second order equation of the type

$\displaystyle y^{\prime\prime} + a(x) y^\prime + b(x) y = 0.$ (9.2.1)

Let $ a$ and $ b$ be analytic around the point $ x_0
= 0.$ In such a case, we may hope to have a solution $ y$ in terms of a power series, say

$\displaystyle y = \sum_{k=0}^\infty c_k x^k.$ (9.2.2)

In the absence of any information, let us assume that (9.2.1) has a solution $ y$ represented by (9.2.2). We substitute (9.2.2) in Equation (9.2.1) and try to find the values of $ c_k$ 's. Let us take up an example for illustration.

EXAMPLE 9.2.1   Consider the differential equation

$\displaystyle y^{\prime\prime} + y = 0$ (9.2.3)

Here $ a(x) \equiv 0, \; b(x)
\equiv 1,$ which are analytic around $ x_0
= 0.$
Solution: Let

$\displaystyle y = \sum_{n=0}^\infty c_n x^n.$ (9.2.4)

Then $ y^\prime =
\sum\limits_{n=0}^\infty n c_n x^{n-1}$ and $ y^{\prime\prime} =
\sum\limits_{n=0}^\infty n (n-1) c_n x^{n-2}.$ Substituting the expression for $ y, \;y^\prime$ and $ y^{\prime\prime}$ in Equation (9.2.3), we get

$\displaystyle \sum_{n=0}^\infty n (n-1) c_n x^{n-2}
+ \sum_{n=0}^\infty c_n x^n = 0$

or, equivalently

$\displaystyle 0 = \sum_{n=0}^\infty (n+2)(n+1) c_{n+2} x^{n}
+ \sum_{n=0}^\infty c_n x^n = \sum_{n=0}^\infty \{ (n+1)(n+2)
c_{n+2} + c_n\} x^{n}.$

Hence for all $ n = 0, 1, 2, \ldots,$

$\displaystyle (n+1)(n+2) c_{n+2} + c_n = 0 \; {\mbox{ or }} \; c_{n+2} = -
\frac{c_n}{(n+1)(n+2)}. $

Therefore, we have

\begin{displaymath}\begin{array}{ll} c_2 = - \frac{c_0}{2!}, & \hspace{1.5in} c_...
...pace{1.5in} c_{2n+1} = (-1)^n
\frac{c_1}{(2n+1)!}. \end{array}\end{displaymath}

Here, $ c_0$ and $ c_1$ are arbitrary. So,

$\displaystyle y = c_0 \sum_{n=0}^\infty \frac{(-1)^n x^{2n}}{(2n)!} +
c_1 \sum_{n=0}^\infty \frac{(-1)^n x^{2n+1}}{(2n+1)!}$

or $ y
= c_0 \cos (x) + c_1 \sin (x)$ where $ c_0$ and $ c_1$ can be chosen arbitrarily. For $ c_0 = 1$ and $ c_1 = 0,$ we get $ y = \cos
(x).$ That is, $ \cos (x)$ is a solution of the Equation (9.2.3). Similarly, $ y = \sin (x)$ is also a solution of Equation (9.2.3).

EXERCISE 9.2.2   Assuming that the solutions $ y$ of the following differential equations admit power series representation, find $ y$ in terms of a power series.
  1. $ y^\prime = - y,$ (centre at $ x_0 = 0$ ).
  2. $ y^\prime = 1 + y^2, $ (centre at $ x_0 = 0$ ).
  3. Find two linearly independent solutions of
    1. $ y^{\prime\prime} - y = 0,$ (centre at $ x_0 = 0$ ).
    2. $ y^{\prime\prime} + 4 y = 0,$ (centre at $ x_0 = 0$ ).

A K Lal 2007-09-12