Linear Equations

Some times we might think of a subset or subclass of differential equations which admit explicit solutions. This question is pertinent when we say that there are no means to find the explicit solution of $ \displaystyle\frac{dy}{dx} = f(x,y)$ where $ f$ is an arbitrary continuous function in $ (x,y)$ in suitable domain of definition. In this context, we have a class of equations, called Linear Equations (to be defined shortly) which admit explicit solutions.

DEFINITION 7.4.1 (Linear/Nonlinear Equations)   Let $ p(x)$ and $ q(x)$ be real-valued piecewise continuous functions defined on interval $ I = [a, b].$ The equation

$\displaystyle y^\prime + p(x) y = q(x), \; x \in I$ (7.4.1)

is called a linear equation, where $ y^\prime$ stands for $ \displaystyle\frac{dy}{dx}.$ The Equation (7.4.1) is called Linear non-homogeneous if $ q(x) \neq 0$ and is called Linear homogeneous if $ q(x) = 0$ on $ I.$

A first order equation is called a non-linear equation (in the independent variable) if it is neither a linear homogeneous nor a non-homogeneous linear equation.

EXAMPLE 7.4.2  
  1. The equation $ y^\prime = \sin y$ is a non-linear equation.
  2. The equation $ y^\prime + y = \sin x$ is a linear non-homogeneous equation.
  3. The equation $ y^\prime + x^2 y = 0$ is a linear homogeneous equation.

Define the indefinite integral $ P(x) = \int p(x) dx$ ( or $ \int\limits_{a}^x p(s) ds$ ). Multiplying (7.4.1) by $ e^{P(x)},$ we get

$\displaystyle e^{P(x)} y^\prime + e^{P(x)} p(x) y = e^{P(x)} q(x) \;\;
{\mbox{ or equivalently}} \;\; \frac{d}{dx} (e^{P(x)} y) =
e^{P(x)} q(x).$

On integration, we get

$\displaystyle e^{P(x)} y = c +
\int e^{P(x)} q(x) dx.$

In other words,

$\displaystyle y = c e^{-P(x)} + e^{-P(x)} \int e^{P(x)} q(x) dx$ (7.4.2)

where $ c$ is an arbitrary constant is the general solution of (7.4.1).

Remark 7.4.3   If we let $ P(x) = \int\limits_{a}^x p(s) ds$ in the above discussion, (7.4.2) also represents

$\displaystyle y = y(a) e^{-P(x)} + e^{-P(x)} \int\limits_a^x e^{P(s)} q(s) ds.$ (7.4.3)

As a simple consequence, we have the following proposition.

PROPOSITION 7.4.4   $ y = c e^{-P(x)}$ (where $ c$ is any constant) is the general solution of the linear homogeneous equation

$\displaystyle y^\prime + p(x) y = 0.$ (7.4.4)

In particular, when $ p(x) = k,$ is a constant, the general solution is $ y = c e^{- k x},$ with $ c$ an arbitrary constant.

EXAMPLE 7.4.5  
  1. Comparing the equation $ y^\prime = y$ with (7.4.1), we have

    $\displaystyle p(x) = -1 \;\; {\mbox{ and }}\;
\; q(x) = 0.$

    Hence, $ P(x) = \int (-1) dx = -x.$ Substituting for $ P(x)$ in (7.4.2), we get $ y = c e^x$ as the required general solution.

    We can just use the second part of the above proposition to get the above result, as $ k = -1.$

  2. The general solution of $ x y^\prime = - y, \; x \in I
\; (0 \not\in I)$ is $ y = c x^{-1},$ where $ c$ is an arbitrary constant. Notice that no non-zero solution exists if we insist on the condition $ \lim\limits_{x
\rightarrow 0, x> 0} y = 0.$

A class of nonlinear Equations (7.4.1) (named after Bernoulli $ (1654 - 1705)$ ) can be reduced to linear equation. These equations are of the type

$\displaystyle y^\prime + p(x) y = q(x) y^a.$ (7.4.5)

If $ a = 0$ or $ a =
1,$ then (7.4.5) is a linear equation. Suppose that $ a \neq 0, 1.$ We then define $ u(x) = y^{1-a}$ and therefore

$\displaystyle u^\prime = (1-a) y^\prime y^{-a} = (1-a) (q(x) - p(x) u)$

or equivalently

$\displaystyle u^\prime + (1-a) p(x) u = (1-a) q(x),$ (7.4.6)

a linear equation. For illustration, consider the following example.

EXAMPLE 7.4.6   For $ m, n$ constants and $ m \neq 0,$ solve $ y^\prime - m y + n y^2=0.$
Solution: Let $ u = y^{-1}.$ Then $ u(x)$ satisfies

$\displaystyle u^{\prime} + m u = n$

and its solution is

$\displaystyle u = A e^{-mx} + e^{-mx} \int n e^{mx} dx = A
e^{-mx} + \frac{n}{m}.$

Equivalently

$\displaystyle y = \frac{1}{A e^{-mx} + \frac{n}{m}}$

with $ m \neq 0$ and $ A$ an arbitrary constant, is the general solution.

EXERCISE 7.4.7  
  1. In Example 7.4.6, show that $ u^{\prime} + m u = n.$
  2. Find the genral solution of the following:
    1. $ y^\prime + y = 4.$
    2. $ y^\prime - 3 y = 10.$
    3. $ y^\prime - 2 x y = 0.$
    4. $ y^\prime - x y = 4 x.$
    5. $ y^\prime + y = e^{-x}.$
    6. $ \sinh x y^\prime + y \cosh x = e^x.$
    7. $ (x^2 + 1) y^\prime + 2 x y = x^2.$
  3. Solve the following IVP's:
    1. $ y^\prime - 4 y = 5, \; y(0) = 0.$
    2. $ y^\prime + (1+x^2) y = 3, \; y(0) = 0.$
    3. $ y^\prime + y = \cos x, \; y(\pi) = 0.$
    4. $ y^\prime- y^2 = 1, \; y(0) = 0.$
    5. $ (1+x) y^\prime + y = 2 x^2, \; y(1) = 1.$
  4. Let $ y_1$ be a solution of $ y^\prime + a(x) y = b_1(x)$ and $ y_2$ be a solution of $ y^\prime + a(x) y = b_2(x).$ Then show that $ y_1 + y_2$ is a solution of

    $\displaystyle y^\prime + a(x) y = b_1(x) + b_2(x).$

  5. Reduce the following to linear equations and hence solve:
    1. $ y^\prime + 2 y = y^2.$
    2. $ (x y + x^3 e^{y} ) y^\prime = y^2.$
    3. $ y^\prime \sin (y) + x \cos (y) = x.$
    4. $ y^\prime - y = x y^2.$
  6. Find the solution of the IVP

    $\displaystyle y^\prime + 4 x y + x y^3 = 0, \;\; y(0) = \frac{1}{\sqrt{2}}.$

A K Lal 2007-09-12