Inverse and the Gauss-Jordan Method

We first give a consequence of Theorem 2.5.8 and then use it to find the inverse of an invertible matrix.

COROLLARY 2.5.13   Let $ A$ be an invertible $ n \times n$ matrix. Suppose that a sequence of elementary row-operations reduces $ A$ to the identity matrix. Then the same sequence of elementary row-operations when applied to the identity matrix yields $ A^{-1}.$

Proof. Let $ A$ be a square matrix of order $ n.$ Also, let $ E_1, E_2, \ldots, E_k$ be a sequence of elementary row operations such that $ E_1 E_2 \cdots E_k A = I_n.$ Then $ E_1 E_2 \cdots
E_k I_n = A^{-1}.$ This implies $ A^{-1} = E_1 E_2 \cdots
E_k.$ height6pt width 6pt depth 0pt

Summary: Let $ A$ be an $ n \times n$ matrix. Apply the Gauss-Jordan method to the matrix $ [A \; \; I_n].$ Suppose the row reduced echelon form of the matrix $ [A \;\; I_n]$ is $ [B \;\; C].$ If $ B = I_n,$ then $ A^{-1} = C$ or else $ A$ is not invertible.

EXAMPLE 2.5.14   Find the inverse of the matrix $ \begin{bmatrix}2 & 1
& 1 \\ 1 & 2 & 1 \\ 1 & 1 & 2 \end{bmatrix}$ using the Gauss-Jordan method.

Solution: Consider the matrix $ \begin{bmatrix}
2 & 1 & 1 & 1 & 0 & 0 \\ 1 & 2 & 1 & 0 & 1 & 0 \\ 1 & 1 & 2 & 0 &
0 & 1 \end{bmatrix}.$ A sequence of steps in the Gauss-Jordan method are:

  1. $ \begin{bmatrix}2 &
1 & 1 & 1 & 0 & 0 \\ 1 & 2 & 1 & 0 & 1 & 0 \\ 1 & 1 & 2 & 0...
...c{1}{2} & 0 & 0 \\ 1 & 2 & 1 & 0 & 1 & 0 \\ 1 & 1 & 2 & 0 & 0 & 1
\end{bmatrix}$
  2. $ \begin{bmatrix}1 &
\frac{1}{2} & \frac{1}{2} & \frac{1}{2} & 0 & 0 \\ 1 & 2 & ...
...} & 1 & 0 \\ 0 & \frac{1}{2} & \frac{3}{2} &
-\frac{1}{2} & 0 & 1 \end{bmatrix}$
  3. $ \begin{bmatrix}1 & \frac{1}{2} & \frac{1}{2} &
\frac{1}{2} & 0 & 0 \\ 0 & \fra...
...2}{3} & 0 \\ 0 & \frac{1}{2} &
\frac{3}{2} & -\frac{1}{2} & 0 & 1
\end{bmatrix}$
  4. $ \begin{bmatrix}1 &
\frac{1}{2} & \frac{1}{2} & \frac{1}{2} & 0 & 0
\\ 0 & 1 & ...
...}{3} & 0 \\ 0 & 0 & \frac{4}{3} & -\frac{1}{3} & -\frac{1}{3} & 1
\end{bmatrix}$
  5. $ \begin{bmatrix}1 & \frac{1}{2} & \frac{1}{2}
& \frac{1}{2} & 0 & 0 \\ 0 & 1 & ...
...}{3} & 0 \\ 0 & 0 & 1 & -\frac{1}{4} & -\frac{1}{4} &
\frac{3}{4}
\end{bmatrix}$
  6. $ \begin{bmatrix}1 & \frac{1}{2} &
\frac{1}{2} & \frac{1}{2} & 0 & 0 \\ 0 & 1 & ...
...c{-1}{4} \\ 0 & 0 & 1 & \frac{-1}{4} &
\frac{-1}{4} & \frac{3}{4}
\end{bmatrix}$
  7. $ \begin{bmatrix}1 &
\frac{1}{2} & 0 & \frac{5}{8} & \frac{1}{8} & \frac{-3}{8}
...
...{-1}{4} \\ 0 & 0 & 1 & \frac{-1}{4} &
\frac{-1}{4} & \frac{3}{4}
\end{bmatrix}.$
  8. Thus, the inverse of the given matrix is $ \begin{bmatrix}
3/4 & -1/4 & -1/4 \\ -1/4 & 3/4 & -1/4 \\
-1/4 & -1/4 & 3/4 \end{bmatrix}.$

EXERCISE 2.5.15   Find the inverse of the following matrices using the Gauss-Jordan method.
$ (i)\; \begin{bmatrix}1 & 2 & 3\\ 1 &3&2 \\ 2 & 4&7
\end{bmatrix},$ $ \;\;(ii)\; \begin{bmatrix}1 & 3 &
3\\ 2 &3&2 \\ 2 & 4&7 \end{bmatrix},$ $ \;\;(iii)\;
\begin{bmatrix}2 & -1 & 3\\ -1 &3&-2 \\ 2 & 4&1
\end{bmatrix}.$

A K Lal 2007-09-12