Proof of Rank-Nullity Theorem

THEOREM 15.5.1   Let $ T: V {\longrightarrow}W$ be a linear transformation and $ \{ u_1, u_2, \ldots, u_n \}$ be a basis of $ V$ . Then
  1. $ {\cal R}(T) = L( T(u_1), T(u_2), \ldots, T(u_n) ).$
  2. $ T$ is one-one $ \Longleftrightarrow \; \; {\cal N}(T) = \{{\mathbf 0}\}$ is the zero subspace of $ V \Longleftrightarrow \; \;$ $ \{ T(u_i): 1 \leq i \leq n \}$ is a basis of $ {\cal R}(T).$
  3. If $ V$ is finite dimensional vector space then $ \dim ({\cal R}(T)) \leq
\dim (V).$ The equality holds if and only if $ {\cal N}(T) = \{{\mathbf 0}\}.$

Proof. Part $ 1)$ can be easily proved. For $ 2),$ let $ T$ be one-one. Suppose $ u \in {\cal N}(T).$ This means that $ T(u) = {\mathbf 0}=
T({\mathbf 0}).$ But then $ T$ is one-one implies that $ u = {\mathbf 0}.$ If $ {\cal N}(T) = \{{\mathbf 0}\}$ then $ T(u) = T(v) \; \Longleftrightarrow T(u - v) = {\mathbf 0}$ implies that $ u = v.$ Hence, $ T$ is one-one.

The other parts can be similarly proved. Part $ 3)$ follows from the previous two parts. height6pt width 6pt depth 0pt

The proof of the next theorem is immediate from the fact that $ T({\mathbf 0}) = {\mathbf 0}$ and the definition of linear independence/dependence.

THEOREM 15.5.2   Let $ T: V {\longrightarrow}W$ be a linear transformation. If $ \{T(u_1), T(u_2), \ldots, T(u_n)
\}$ is linearly independent in $ {\cal R}(T)$ then $ \{u_1, u_2, \ldots, u_n
\} \subset V $ is linearly independent.

THEOREM 15.5.3 (Rank Nullity Theorem)   Let $ T: V {\longrightarrow}W$ be a linear transformation and $ V$ be a finite dimensional vector space. Then

$\displaystyle \dim ({\mbox{ Range}}(T)) + \dim ({\cal N}(T)) = \dim (V),$

or $ \rho(T) + \nu (T) = n.$

Proof. Let $ \dim(V) = n$ and $ \dim ({\cal N}(T)) = r.$ Suppose $ \{u_1, u_2, \ldots, u_r \}$ is a basis of $ {\cal N}(T).$ Since $ \{u_1, u_2, \ldots, u_r \}$ is a linearly independent set in $ V,$ we can extend it to form a basis of $ V.$ Now there exists vectors $ \{u_{r+1}, u_{r+2}, \ldots, u_n \}$ such that the set $ \{u_1,
\ldots, u_r, u_{r+1}, \ldots, u_n \}$ is a basis of $ V.$ Therefore,
$\displaystyle {\mbox{Range }} (T)$ $\displaystyle =$ $\displaystyle L ( T(u_1), T(u_2),
\ldots, T(u_n) )$  
  $\displaystyle =$ $\displaystyle L ( {\mathbf 0}, \ldots, {\mathbf 0}, T(u_{r+1}),
T(u_{r+2}), \ldots, T(u_n) )$  
  $\displaystyle =$ $\displaystyle L ( T(u_{r+1}), T(u_{r+2}),
\ldots, T(u_n) )$  

which is equivalent to showing that $ {\mbox{ Range }}(T)$ is the span of $ \{ T(u_{r+1}), T(u_{r+2}),
\ldots, T(u_n) \}.$

We now prove that the set $ \{ T(u_{r+1}), T(u_{r+2}), \ldots, T(u_n)
\}$ is a linearly independent set. Suppose the set is linearly dependent. Then, there exists scalars, $ \alpha_{r+1},
\alpha_{r+2}, \ldots, \alpha_n,$ not all zero such that

$\displaystyle \alpha_{r+1} T(u_{r+1}) + \alpha_{r+2} T(u_{r+2}) + \cdots + \alpha_n
T(u_n) = {\mathbf 0}.$

Or $ T ( \alpha_{r+1} u_{r+1} + \alpha_{r+2} u_{r+2} + \cdots + \alpha_n
u_n )= {\mathbf 0}$ which in turn implies $ \alpha_{r+1} u_{r+1} + \alpha_{r+2} u_{r+2} + \cdots + \alpha_n
u_n \in {\cal N}(T) = L ( u_1, \ldots, u_r).$ So, there exists scalars $ \alpha_i, \; 1 \leq i \leq r$ such that

$\displaystyle \alpha_{r+1} u_{r+1} + \alpha_{r+2} u_{r+2} + \cdots + \alpha_n
u_n = \alpha_{1} u_{1} + \alpha_{2} u_{2} + \cdots + \alpha_r u_r.$

That is,

$\displaystyle \alpha_1 u_1 + + \cdots + \alpha_r u_r - \alpha_{r+1} u_{r+1} -
\cdots - \alpha_n u_n = {\mathbf 0}.$

Thus $ \alpha_i =
0$ for $ 1 \leq i \leq n$ as $ \{ u_1, u_2, \ldots, u_n \}$ is a basis of $ V.$ In other words, we have shown that the set $ \{ T(u_{r+1}), T(u_{r+2}), \ldots, T(u_n)
\}$ is a basis of $ {\mbox{Range }}
(T).$ Now, the required result follows. height6pt width 6pt depth 0pt

we now state another important implication of the Rank-nullity theorem.

COROLLARY 15.5.4   Let $ T: V {\longrightarrow}V$ be a linear transformation on a finite dimensional vector space $ V.$ Then

$\displaystyle T {\mbox{ is one-one }} \Longleftrightarrow T {\mbox{ is onto}}
\Longleftrightarrow T {\mbox{ has an inverse}}.$

Proof. Let $ \dim(V) = n$ and let $ T$ be one-one. Then $ \dim ({\cal N}(T)) =
0.$ Hence, by the rank-nullity Theorem 14.5.3 $ \dim ({\mbox{ Range }} (T)) = n = \dim (V).$ Also, $ {\mbox{ Range }}(T)$ is a subspace of $ V.$ Hence, $ {\mbox{Range}}(T) = V.$ That is, $ T$ is onto.

Suppose $ T$ is onto. Then $ {\mbox{Range}}(T) = V.$ Hence, $ \dim
({\mbox{ Range }} (T)) = n.$ But then by the rank-nullity Theorem 14.5.3, $ \dim ({\cal N}(T)) =
0.$ That is, $ T$ is one-one.

Now we can assume that $ T$ is one-one and onto. Hence, for every vector $ {\mathbf u}$ in the range, there is a unique vectors $ {\mathbf v}$ in the domain such that $ T({\mathbf v}) = {\mathbf u}.$ Therefore, for every $ {\mathbf u}$ in the range, we define

$\displaystyle T^{-1}({\mathbf u}) = {\mathbf v}.$

That is, $ T$ has an inverse.

Let us now assume that $ T$ has an inverse. Then it is clear that $ T$ is one-one and onto. height6pt width 6pt depth 0pt

A K Lal 2007-09-12