Dimension of $ M + N$

THEOREM 15.4.1   Let $ V ({\mathbb{F}})$ be a finite dimensional vector space and let $ M$ and $ N$ be two subspaces of $ V.$ Then

$\displaystyle \dim (M) + \dim(N) = \dim (M + N) + \dim (M \cap N).$ (15.4.7)

Proof. Since $ M \cap N$ is a vector subspace of $ V,$ consider a basis $ {\cal B}_1 = \{{\mathbf u}_1, {\mathbf u}_2, \ldots, {\mathbf u}_k \}$ of $ M \cap N.$ As, $ M \cap N$ is a subspace of the vector spaces $ M$ and $ N,$ we extend the basis $ {\cal B}_1$ to form a basis $ {\cal B}_M = \{ {\mathbf u}_1, {\mathbf u}_2, \ldots, {\mathbf u}_k,
{\mathbf v}_1, \ldots, {\mathbf v}_r \}$ of $ M$ and also a basis $ {\cal B}_N = \{{\mathbf u}_1,
{\mathbf u}_2, \ldots, {\mathbf u}_k, {\mathbf w}_1, \ldots, {\mathbf w}_s \}$ of $ N.$

We now proceed to prove that that the set $ {\cal B}_2 = \{{\mathbf u}_1, {\mathbf u}_2, \ldots, {\mathbf u}_k, {\mathbf w}_1, \ldots,
{\mathbf w}_s, {\mathbf v}_1, {\mathbf v}_2, \ldots, {\mathbf v}_r \}$ is a basis of $ M+N.$

To do this, we show that

  1. the set $ {\cal B}_2$ is linearly independent subset of $ V,$ and
  2. $ L({\cal B}_2) = M + N.$
The second part can be easily verified. To prove the first part, we consider the linear system of equations

$\displaystyle {\alpha}_1 {\mathbf u}_1 + \cdots + {\alpha}_k {\mathbf u}_k + \b...
... w}_s + \gamma_1 {\mathbf v}_1 + \cdots + \gamma_r {\mathbf v}_r = {\mathbf 0}.$ (15.4.8)

This system can be rewritten as

$\displaystyle {\alpha}_1 {\mathbf u}_1 + \cdots + {\alpha}_k {\mathbf u}_k + \b...
...s {\mathbf w}_s
= - (\gamma_1 {\mathbf v}_1 + \cdots + \gamma_r {\mathbf v}_r).$

The vector $ {\mathbf v}= - (\gamma_1 {\mathbf v}_1 + \cdots + \gamma_r {\mathbf v}_r) \in
M,$ as $ {\mathbf v}_1, \ldots, {\mathbf v}_r \in {\cal B}_M.$ But we also have $ {\mathbf v}=
{\alpha}_1 {\mathbf u}_1 + \cdots + {\alpha}_k {\mathbf u}_k + \beta_1 {\mathbf w}_1 + \cdots +\beta_s
{\mathbf w}_s \in N$ as the vectors $ {\mathbf u}_1, {\mathbf u}_2, \ldots, {\mathbf u}_k, {\mathbf w}_1,
\ldots, {\mathbf w}_s \in {\cal B}_N.$ Hence, $ {\mathbf v}\in M \cap N$ and therefore, there exists scalars $ \delta_1, \ldots, \delta_k$ such that $ {\mathbf v}=
\delta_1 {\mathbf u}_1 + \delta_2 {\mathbf u}_2 + \cdots + \delta_k {\mathbf u}_k.$

Substituting this representation of $ {\mathbf v}$ in Equation (14.4.8), we get

$\displaystyle ({\alpha}_1 - \delta_1){\mathbf u}_1 + \cdots + ({\alpha}_k - \de...
...hbf u}_k +
\beta_1 {\mathbf w}_1 + \cdots +\beta_s {\mathbf w}_s = {\mathbf 0}.$

But then, the vectors $ {\mathbf u}_1, {\mathbf u}_2, \ldots, {\mathbf u}_k, {\mathbf w}_1, \ldots, {\mathbf w}_s $ are linearly independent as they form a basis. Therefore, by the definition of linear independence, we get

$\displaystyle {\alpha}_i - \delta_i = 0, \; {\mbox{ for }} \; 1 \leq i \leq k
\; {\mbox{ and }} \; \beta_j = 0 \; {\mbox{ for }} \; 1 \leq j \leq s.$

Thus the linear system of Equations (14.4.8) reduces to

$\displaystyle {\alpha}_1 {\mathbf u}_1 + \cdots + {\alpha}_k {\mathbf u}_k + \gamma_1 {\mathbf v}_1 + \cdots +
\gamma_r {\mathbf v}_r = {\mathbf 0}.$

The only solution for this linear system is

$\displaystyle {\alpha}_i = 0, \; {\mbox{ for }} \; 1 \leq i \leq k
\; {\mbox{ and }} \; \gamma_j = 0 \; {\mbox{ for }} \; 1 \leq j \leq r.$

Thus we see that the linear system of Equations (14.4.8) has no non-zero solution. And therefore, the vectors are linearly independent.

Hence, the set $ {\cal B}_2$ is a basis of $ M+N.$ We now count the vectors in the sets $ {\cal B}_1, {\cal B}_2, {\cal B}_M$ and $ {\cal B}_N$ to get the required result. height6pt width 6pt depth 0pt

A K Lal 2007-09-12