Condition for Exactness

Let $ D$ be a region in $ xy$ -plane and let $ M$ and $ N$ be real valued functions defined on $ D.$ Consider an equation

$\displaystyle M(x, y(x)) dx + N(x, y(x)) dy = 0, \; (x, y(x)) \in D.$ (15.6.9)

DEFINITION 15.6.1 (Exact Equation)   The Equation (14.6.9) is called Exact if there exists a real valued twice continuously differentiable function $ f$ such that

$\displaystyle \frac{\partial f}{\partial x} = M \; {\mbox{ and }} \; \frac{\partial f}{\partial y} = N.$

THEOREM 15.6.2   Let $ M$ and $ N$ be ``smooth" in a region $ D.$ The equation (14.6.9) is exact if and only if

$\displaystyle \frac{\partial M}{\partial y}= \frac{\partial N}{\partial x}.$ (15.6.10)

Proof. Let Equation (14.6.9) be exact. Then there is a ``smooth" function $ f$ (defined on $ D$ ) such that $ M =
\frac{\partial f}{\partial x} $ and $ N = \frac{\partial
f}{\partial y}.$ So, $ \frac{\partial M}{\partial y}=
\frac{\partial^2 f}{\partial y \partial x} = \frac{\partial^2
f}{\partial x \partial y}= \frac{\partial N}{\partial x}$ and so Equation (14.6.10) holds.

Conversely, let Equation (14.6.10) hold. We now show that Equation (14.6.10) is exact. Define $ G(x,y)$ on $ D$ by

$\displaystyle G(x,y) = \int M(x,y) dx + g(y)$

where $ g$ is any arbitrary smooth function. Then $ \frac{\partial G}{\partial x} = M(x,y)$ which shows that

$\displaystyle \frac{\partial}{\partial x} \cdot \frac{\partial G}{\partial y} =...
...}{\partial x} = \frac{\partial M}{\partial y} =
\frac{\partial N}{\partial x}.$

So $ \frac{\partial }{\partial x} (N - \frac{\partial G}{\partial
y}) = 0$ or $ N - \frac{\partial G}{\partial y}$ is independent of $ x.$ Let $ \phi(y) = N - \frac{\partial G}{\partial y}$ or $ N =
\phi(y) + \frac{\partial G}{\partial y}.$ Now
$\displaystyle M(x,y) + N \frac{dy}{dx}$ $\displaystyle =$ $\displaystyle \frac{\partial G}{\partial x} +
\left[ \frac{\partial G}{\partial y} + \phi(y)\right] \frac{dy}{dx}$  
  $\displaystyle =$ $\displaystyle \left[ \frac{\partial G}{\partial x} + \frac{\partial G}{\partial...
...rac{dy}{dx} \right]
+ \frac{d}{dy} \left( \int \phi(y) dy \right) \frac{dy}{dx}$  
  $\displaystyle =$ $\displaystyle \frac{d}{dx} G(x, y(x)) + \frac{d}{dx}\left( \int \phi(y) dy \right) \hspace{.5in} {\mbox{where }}
y = y(x)$  
  $\displaystyle =$ $\displaystyle \frac{d}{dx} \bigl( f(x,y) \bigr) \hspace{.5in} {\mbox{ where }}
f(x,y) = G(x,y) + \int \phi(y) dy$  

height6pt width 6pt depth 0pt

A K Lal 2007-09-12