Module 6 : PHYSICS OF SEMICONDUCTOR DEVICES
Lecture 34 : Condition of Charge Neutrality
$\displaystyle q(N_d^++p) = q(N_a^-+n)$
  If all the donors and acceptors are ionized, then,
 
$\displaystyle q(N_d+p) = q(N_a+n)$
  Using $ np = n_i^2$, we get
 
$\displaystyle n$ $\displaystyle =$ $\displaystyle (N_d - N_a) + p$
$\displaystyle =$ $\displaystyle (N_d-N_a) + \frac{n_i^2}{n}$
  Thus we get a quadratic equation for the electron density
 
$\displaystyle n^2 - (N_d-N_a)n - n_i^2 =0$
  with solution
 
$\displaystyle \boxed{n=\frac{N_d-N_a}{2}+\sqrt{\frac{(N_d-N_a)^2+4n_i^2}{4}}}$
   
17