Theorem 4.4:

Let $ X$ and $ Y$ be topological spaces and $ f : X \longrightarrow Y$ be a surjective continuous map such that the given topology on $ Y$ agrees with the quotient topology on $ Y$ induced by $ f$. Define an equivalence relation $ \sim$ on $ X$ as follows:

$\displaystyle x_1 \sim x_2$    if and only if $\displaystyle f(x_1) = f(x_2), \quad x_1, x_2 \in X
$

The identification space $ X/\sim$ is homeomorphic to $ Y$ via the map $ \phi : X/\sim \longrightarrow Y$ given by

$\displaystyle \phi(\overline{x}) = f(x).
$



nisha 2012-03-20