Example 38.2:

In general, given a pair of open sets $ \{U, V\}$ of a topological space $ X$, let $ W = (U\cup V) - V$. Then, the closure of $ W$ in $ U\cap V$ is contained in $ U$ and since

$\displaystyle (X - W,\; U - W) = (V, U\cap V),
$

the excision theorem gives

$\displaystyle H_n(U\cup V,\; U) \cong H_n(V,\; U\cap V), \quad n = 0, 1, 2, \dots
$



nisha 2012-03-20