Proof:

We shall prove that $ \eta$ is injective, leaving surjectivity as an exercise. Assume $ \eta(a_3) = 0$ for some $ a_3 \in A_3$ so that $ \beta_3\circ \eta(a_3) = 0$. The commutativity of the third square now gives $ \phi_1\circ \alpha_3(a_3) = 0$. Using injectivity of $ \phi_1$ and exactness of the top row we arrive at

$\displaystyle a_3 = \alpha_2(a_2) \eqno(38.1)
$

for some $ a_2 \in A_2$. Again, $ 0 = \eta(a_3) = \eta\circ\alpha_2(a_2) = \beta_2\circ \psi_2(a_2)$ showing that $ \psi_2(a_2) \in\;$im$ \;\beta_1$. Thus $ \psi_2(a_2) = \beta_1(b_1)$ for some $ b_1 \in B_1$ and using the surjectivity of $ \psi_1$ we get for some $ a_1 \in A_1$,

$\displaystyle \psi_2(a_2) = \beta_1\circ\psi_1(a_1) = \psi_2\circ \alpha_1(a_1).
$

Injectivity of $ \psi_2$ now gives $ a_2 - \alpha_1(a_1) = 0$. Substituting into (38.1) we conclude $ a_3 = 0$.

nisha 2012-03-20