Theorem 34.7 (Mayer Vietoris sequence):

(i) Let $ \{U, V\}$ be an open covering of $ X$,

$\displaystyle \kappa^{\prime}:H_k(U\cap V)\longrightarrow H_k(U), \quad
\kappa^{\prime\prime}:H_k(U\cap V)\longrightarrow H_k(V)
$

be the maps induced by inclusions. Further, let $ q_n : H_n(U)\oplus H_n(V)\longrightarrow H_n(U\cup V)$ be the map:

$\displaystyle (a, b)\mapsto j_{1*}a+j_{2*}b,
$

where $ j_{1*}$ and $ j_{2*}$ are induced by the respective inclusions $ j_1:U\longrightarrow U\cup V$ and $ j_2:V\longrightarrow U\cup V$. Then, the following long exact sequence known as the Mayer Vietoris sequence holds:

$\displaystyle \begin{CD}
@> >> H_n(U\cap V) @> (\kappa^{\prime}, -\kappa^{\pri...
... H_n(V) @> q_n >>
H_n(U\cup V) @>{\delta_n} >> H_{n-1}(U\cap V) @> >>
\end{CD}$

(ii) A cycle $ \zeta \in Z_n(U\cup V)$ may be represented (modulo boundaries) as $ \zeta = \zeta_1 + \zeta_2$ for some $ \zeta_1\in S_n(U)$ and $ \zeta_2 \in S_n(V)$ and the connecting homomorphism $ \delta_n$ is given by

$\displaystyle \delta_n\;:\; \zeta \mapsto \partial \zeta_1 = -\partial \zeta_2.
$



nisha 2012-03-20