Proof:

In the diagrams below, the Left hand square depicts a push-out square of inclusions which goes over to a push-out square of complexes on the right:
$ \begin{CD}
U\cap V @> i_1 >> U \\
@V{i_2}VV @VV{j_1}V\\
V @> j_2 >> U\cup V \\
\end{CD}$ $ \begin{CD}
S(U\cap V) @> i_1 >> S(U) \\
@V{i_2}VV @VV{j_1}V\\
S(V) @> j_2 >> S^{\;{\cal U}}(U\cup V) \\
\end{CD}$
The reader may check that the latter may be recast as a short exact sequence of chain complexes namely

$\displaystyle \begin{CD}
0 @> >> S(U\cap V)@> (i_1, -i_2) >> S(U)\oplus S(V) @> j_1 + j_2 >> S^{\;{\cal U}}(U\cap V)@> >> 0.
\end{CD} \eqno(34.11)
$

The corresponding long exact sequence in homology gives

$\displaystyle \begin{CD}
@> >> H_n(U\cap V) @> (\kappa^{\prime}, -\kappa^{\pri...
... @> Q_n >> H^{\;{\cal U}}_n(U\cup V) @>{D_n} >> H_{n-1}(U\cap V) @> >>
\end{CD}$

The definition of $ \kappa^{\prime}, \kappa^{\prime\prime}$ and exercise 6 enables us to replace $ Q_n$ and $ D_n$ by the composites
$\displaystyle \begin{CD}
q_n \;: \; H_n(U)\oplus H_n(V) @> Q_n >> H^{\;{\cal U}}_n(U\cup V) @> \lambda >> H_n(U\cup V)
\end{CD} \phantom{XXXXXXXXXXXX}$      
$\displaystyle \phantom{X}$      
$\displaystyle \begin{CD}
\phantom{XXXXXX.XX}\delta_n \;: \; H_n(U\cap V) @>
\la...
...cal U}}_n(U\cup V) @> D_n >> H_n(U\cap V)\phantom{XXXXXXXXXX..}(34.12)
\end{CD}$      

where $ \lambda$ is the isomorphism given by theorem (34.6). The final result is the Mayer Vietoris sequence stated in the theorem. The second part is clear from (29.18). $ \square$

nisha 2012-03-20