Homotopy and chain homotopy:

Chain homotopy is the algebraization of the topological notion of homotopic maps. Let $ F:I\times X\longrightarrow Y$ be a homotopy between two continuous functions $ f : X \longrightarrow Y$ and $ g:X\longrightarrow Y$. We use this map to define a sequence of maps

$\displaystyle L_n:S_n(X)\longrightarrow S_{n+1}(Y)\eqno(33.6)
$

satisfying the condition

$\displaystyle \partial \circ L_n + L_{n-1}\circ \partial = f_{\sharp} - g_{\sharp}. \eqno(33.7)
$

Let $ u:\Delta_1\longrightarrow I$ be the unique one simplex. For a singular $ n$ simplex $ \sigma$ in $ X$, define

$\displaystyle L_n(\sigma) = F_{\sharp}(u\times \sigma).
$

Then we compute using (33.1)-(33.2),
$\displaystyle \partial (L_n(\sigma))$ $\displaystyle =$ $\displaystyle F_{\sharp}(\partial u\times \sigma) - F_{\sharp}(u\times \partial \sigma)$  
  $\displaystyle =$ $\displaystyle F_{\sharp}(\partial u\times \sigma) - L_{n-1}(\partial \sigma)$  
% latex2html id marker 32448
$\displaystyle \therefore\; \partial (L_n(\sigma)) + L_{n-1}(\partial \sigma)$ $\displaystyle =$ $\displaystyle F_{\sharp}(\{1\}\times \sigma) - F_{\sharp}(\{0\}\times \sigma)$  
% latex2html id marker 32454
$\displaystyle \therefore\; \partial (L_n(\sigma)) + L_{n-1}(\partial \sigma)$ $\displaystyle =$ $\displaystyle F(1, \sigma(\cdot)) - F(0, \sigma(\cdot)).$  

So we have the important equation

$\displaystyle \partial (L_n(\sigma)) + L_{n-1}(\partial \sigma) = g_{\sharp}(\sigma) - f_{\sharp}(\sigma),\quad \sigma\in S_n(X). \eqno(33.8)
$

completing the proof of (33.7). The reader must go back to lemma (32.2) to observe some analogies. After these preparations we are ready to prove the following important result. Unlike theorems (11.2) - (11.5) we do not have to worry here about base points which makes life a lot easier.
nisha 2012-03-20