Definition 32.1 (Natural transformation):

Given a pair of functors $ \pi:{\cal T}\longrightarrow {\cal G}$ and $ H:{\cal T}\longrightarrow {\cal G}$, a natural transformation $ T$ between $ \pi$ and $ H$ is a function which assigns to each object $ X$ of $ {\cal T}$ a morphism $ \eta_X : \pi(X)\longrightarrow H(X)$ such that for each morphism $ f : X \longrightarrow Y$ in $ {\cal T}$, the following diagram commutes
$ \begin{CD}
\pi(X) @> {\pi(f)} >> \pi(Y) \\
@V{\eta_X}VV @VV{\eta_Y} V\\
H(X) @> H(f) >> H(Y) \\
\end{CD}$(32.12)
The notation used in this definition is quite suggestive. The Poincaré-Hurewicz map provides a natural transformation between the functors $ \pi_1$ and $ H_1$.

nisha 2012-03-20