Lemma 32.5:

Suppose $ G$ is a group and $ x_1, x_2,\dots, x_k$ are distinct elements of $ G$ such that $ x_i \neq x_j^{-1}$ if $ i\neq j$. Let $ w$ be a word involving integer powers of $ x_1, x_2,\dots, x_k$ such that the sum of the exponents of each $ x_i$ is zero. Then $ w$ lies in the commutator subgroup of $ G$.

nisha 2012-03-20