Proof:

Choose a point $ x_0 \in X$ and $ F:X\times [0, 1]\longrightarrow X$ be the homotopy $ F(x, t) = (1-t)x + tx_0$. We shall define a group homomorphism $ T:S_{n-1}(X)\longrightarrow S_{n}(X)$ satisfying a certain property (31.6) below. This is a special case of a chain homotopy that we shall encounter later in a more general context. Since $ S_{n-1}(X)$ is a free abelian group generated by singular $ (n-1)$ simplicies, it suffices to define $ T$ these. For a singular $ (n-1)$ simplex $ \sigma:\Delta_{n-1}\longrightarrow X$, define the continuous map $ T\sigma :\Delta_{n}\longrightarrow X$ in terms of the barycentric coordinates using the expression (31.3) namely

$\displaystyle (T\sigma)(\lambda_1, \dots, \lambda_{n+1}) =
F((\sigma\circ U)(\lambda_1, \dots, \lambda_{n+1}), \lambda_{n+1}).\eqno(31.4)
$

The continuity of $ T\sigma$ is left as an exercise. Let us calculate the boundary of $ T\sigma$ using equations (29.1) and (29.4). Recalling the notations used in lecture 29, one checks that $ (T\sigma)\circ \Phi^n_n = \sigma.$

For $ 0 \leq j \leq n-1$, the $ j-$th singular face is given by

$\displaystyle (T\sigma)\circ \Phi^n_j(t_1, \dots, t_n) = F((\sigma\circ U)(t_1, \dots, t_{j-1}, 0, t_j,\dots, t_n), t_n). \eqno(31.5)
$

On the other hand when $ 0 \leq j \leq n-1$,

$\displaystyle T(\sigma\circ\Phi^{n-1}_j)(t_1,\dots, t_n) = T\Big(\sigma\Big(
\f...
...}}{1-t_n},0, \frac{t_j}{1-t_n},\dots,\frac{t_{n-1}}{1-t_n}
\Big),\;t_n
\Big),
$

which may be rewritten as $ T((\sigma\circ U)(t_1, \dots, t_{i-1},0,t_i,\dots, t_{n-1}), t_n)$, in agreement with the right hand side of (31.5). From equation (29.4) it follows that for $ n\geq 1$,

$\displaystyle \partial _n(T\sigma) - T(\partial _n\sigma) = \sigma,\quad \sigma \in S_n(X), \eqno(31.6)
$

whereby we conclude that if $ \sigma \in Z_n(X)$ then $ \sigma = \partial _n(T\sigma) \in B_n(X)$. That is $ Z_n(X) = B_n(X)$.
nisha 2012-03-20