Theorem 31.6:

If $ {\bf v}_1, {\bf v}_2, \dots, {\bf v}_k \in \mathbb{R}^n$ are affinely independent then every point $ x$ in the convex hull of $ {\bf v}_1, {\bf v}_2, \dots, {\bf v}_k$ can be uniquely expressed as

$\displaystyle x = t_1{\bf v}_1 + t_2{\bf v}_2 + \dots + t_k{\bf v}_k, \eqno(31.2)
$

where the coefficients $ t_j$ ( $ 1\leq j\leq k$) are non-negative and $ t_1 + t_2 + \dots + t_k = 1$. These coefficients are called the barycentric coordinates of $ x$.

We consider the standard $ n$ simplex $ \Delta_{n}$ in $ \mathbb{R}^{n+1}$ with summit $ S = {\bf e}_{n+1}$. The figure below depicts a general point $ Q$ on the face $ \Delta_{n-1}$ opposite to $ S$ and $ P$ an arbitrary point on the line segment joining $ Q$ and $ S$. The reader may check that if $ \lambda_1, \lambda_2, \dots ,\lambda_{n+1}$ are the barycentric coordinates of $ P$ then the coordinates of $ Q$ are given by the $ n-$tuple

$\displaystyle U(\lambda_1, \dots, \lambda_{n+1}) = \Big(
\frac{\lambda_1}{1-\la...
...}{1-\lambda_{n+1}}, \dots, \frac{\lambda_n}{1-\lambda_{n+1}}
\Big) \eqno(31.3)
$

Note that $ U$ is bounded but not continuous when $ \lambda_{n+1}\longrightarrow 1$. in As $ P$ approaches $ S$ the pyramid with base $ \Delta_{n-1}$ and summit $ P$ fills up $ \Delta_n$. We are now in a position to prove the following theorem.

nisha 2012-03-20