Proof:

For each $ x \in Z_n(L)$,

$\displaystyle H_n(\psi\circ\phi)(\overline{x}) = \overline{\psi_n\circ\phi_n(x)} = H_n(\psi)(\overline{\phi_n(x)}) =
H_n(\psi)\circ H_n(\phi)(\overline{x}).
$

We shall at some point as we go along, drop the primes and denote both sets of boundary maps by $ \partial _n$ or even $ \partial $. Observe that if $ z \in$   ker$ \;\phi_n$ then

$\displaystyle \phi_{n-1}(\partial _n z) = \partial _{n-1} \phi_n(z) = 0,
$

whereby we conclude that $ \partial _n$ maps ker$ \;\phi_n$ into ker $ \;\phi_{n-1}$ and we get a chain complex

$\displaystyle \begin{CD}
@> >>$   ker$\displaystyle \;\phi_{n+1} @> {\partial _{n+1}} >>$   ker$\displaystyle \;\phi_{n} @> \partial _n >>$   ker$\displaystyle \;\phi_{n-1} @> >>
\end{CD}$

which we denote by ker$ \;\phi$. Likewise we get the chain complex

$\displaystyle \begin{CD}
@> >>$   Im$\displaystyle \;\phi_{n+1} @> {\partial _{n+1}} >>$   Im$\displaystyle \;\phi_{n} @> \partial _n >>$   Im$\displaystyle \;\phi_{n-1} @> >>
\end{CD}$

which we denote by Im$ \;\phi$. It is clear from (29.13) that $ \partial _n$ maps Im$ \;\phi_n$ into Im $ \;\phi_{n-1}$.

nisha 2012-03-20