Theorem 29.5:

Suppose given a pair of chain maps $ \phi:L\longrightarrow G$ and $ G\longrightarrow K$, then the composite $ \psi\circ\phi:L\longrightarrow K$ is a chain map and

$\displaystyle H_n(\psi\circ \phi) = H_n(\psi)\circ H_n(\phi), \quad n = 0, 1, 2,\dots \eqno(29.15)
$

In other words for each $ n$ we get a covariant functor $ H_n$ from the category of chain complexes to the category AbGr.

nisha 2012-03-20