Definition 29.6:

Given two chain complexes $ G$ and $ K$ with boundary maps $ \partial ^{\prime}:G_n\longrightarrow G_{n-1}$ and $ \partial ^{\prime\prime}:K_n\longrightarrow K_{n-1}$, a chain map $ \phi:G\longrightarrow K$ is a sequence of group homomorphisms $ \phi_n:G_n\longrightarrow K_n$ ( $ n = 0, 1, 2,\dots$) such that

$\displaystyle \partial _n^{\prime\prime} \circ \phi_n = \phi_{n-1}\circ \partial _n^{\prime} \eqno(29.13)
$

Equation (29.13) may be summarized by declaring that the following diagram commutes:
$ \begin{CD}
G_n @> \partial _n^{\prime} >> G_{n-1} \\
@V{\phi_n}VV @VV{\phi_{n-1}} V\\
K_n @> \partial _n^{\prime\prime} >> K_{n-1} \\
\end{CD}$(29.14)


nisha 2012-03-20