Proof:

It clearly suffices to check the result on the generators of $ S_n(X)$. So let $ \sigma$ be an arbitrary singular $ n$ simplex. Using equation (29.4),

$\displaystyle (\partial _{n-1}\circ \partial _n)\sigma = \partial _{n-1}\Big(
\...
...um_{i=0}^n\sum_{j=0}^{n-1}(-1)^{i+j} \sigma\circ(\Phi_i^n \circ \Phi_j^{n-1}).
$

To use lemma (29.1) we break the double sum in two pieces and write

$\displaystyle (\partial _{n-1}\circ \partial _n)\sigma = \sum_{i\leq j}(-1)^{i+...
...hi_j^{n-1}) +
\sum_{j < i}(-1)^{i+j} \sigma\circ(\Phi_i^n \circ \Phi_j^{n-1})
$

Using (29.2) in the second piece we get

$\displaystyle (\partial _{n-1}\circ \partial _n)\sigma = \sum_{i\leq j}(-1)^{i+...
...^{n-1}) +
\sum_{j < i}(-1)^{i+j} \sigma\circ(\Phi_j^n \circ \Phi_{i-1}^{n-1})
$

It may be noted that each of the two pieces is a sum of $ n(n+1)/2$ terms (why?). Renaming $ i-1$ as $ k$ in the second sum gives

$\displaystyle (\partial _{n-1}\circ \partial _n)\sigma = \sum_{i\leq j\leq n-1}...
...m_{j\leq k\leq n-1} (-1)^{k+j-1}\sigma\circ(\Phi_j^n \circ \Phi_{k}^{n-1}) = 0
$

as desired.

Now suppose that $ X$ and $ Y$ are two topological spaces and $ f : X \longrightarrow Y$ is a continuous map then $ f\circ \sigma$ is a singular $ n-$simplex in $ Y$ whenever $ \sigma$ is a singular $ n-$simplex in $ X$.


nisha 2012-03-20