Definition 29.1 (The standard simplex):

The standard $ n-$simplex denoted by $ \Delta_n$ is the convex hull of the $ n+1$ the standard unit vectors in $ \mathbb{R}^{n+1}$. Denoting the standard unit vectors by $ {\bf e}_1, {\bf e}_2, \dots, {\bf e}_{n+1}$, their convex hull is the set

$\displaystyle \Delta_n =
\{(t_1, t_2, \dots, t_{n+1}),\;\; t_1\geq 0,\;t_2\geq 0,\dots,t_{n+1}\geq 0,\; t_1 + t_ 2 + \dots + t_{n+1} = 1\}.
$

We take the standard zero simplex $ \Delta_0$ to be the point $ {\bf e}_1$.

Thus $ \Delta_2$ is the equilateral triangle with vertices $ (1, 0, 0), (0, 1, 0)$ and $ (0, 0, 1)$ and the one simplex $ \Delta_1$ is the line segment in $ \mathbb{R}^2$ joining the points $ (1, 0)$ and $ (0, 1)$.

Note that $ \Delta_2$ contains three copies of $ \Delta_1$ namely the sides of the equilateral triangle. Likewise $ \Delta_3$ contains four copies of $ \Delta_2$, the four faces of the regular tetrahedron. To formalize this idea, we introduce $ (n+1)$ affine maps $ \Delta_{n-1} \longrightarrow \Delta_{n}$ called the face maps. For $ i = 1, 2, 3$, the $ i-$th face of $ \Delta_2$ is the face opposite to vertex $ {\bf e}_i$ and consists of all points $ (t_1, t_2, t_3)$ with non-negative entries and $ t_1+t_2+t_3 = 1$ such that the $ i-$th coordinate $ t_i$ vanishes.

Now suppose that $ (t_1, t_2, \dots, t_{n+1})$ denotes denotes a typical point on the last face of $ \Delta_n$. Then since $ t_{n+1}$ vanishes, we see that $ (t_1, t_2, \dots, t_n)$ is a typical point on $ \Delta_{n-1}$. Turning the argument around we define the map

$\displaystyle \Delta_{n-1}\longrightarrow \Delta_n\phantom{XXXXX.}$      
$\displaystyle (t_1, t_2, \dots, t_n)\mapsto (t_1, t_2, \dots, t_n, 0),$      

where the $ t_i$ are all non-negtive and $ \sum t_i = 1$, and call it the standard $ n$-th face map. The $ i-$th face map ( $ 0\leq i \leq n$) would be
$\displaystyle \phantom{X.XXXXXXXXXXXXXXXX}\Phi_i^{n}:\Delta_{n-1}$   $\displaystyle \longrightarrow \Delta_n$  
$\displaystyle (t_1, t_2,\dots, t_n)$   $\displaystyle \mapsto (t_1, t_2, \dots,t_{i-1},0, t_i,\dots, t_{n}),\phantom{XXXXXXX}{(29.1)}$  

We leave it to the reader to write down explicitly the maps $ \Phi_j^{n}\circ \Phi_i^{n-1}:\Delta_{n-2}\longrightarrow \Delta_n$ and prove the following result:
nisha 2012-03-20