Theorem 26.8:

Let $ X\sqcup_f E^k$ be the space obtained by attaching a $ k$ cell to a path connected space $ X$ via a map $ f:S^{k-1}\longrightarrow X$. Then for any choice of base point in $ f(S^{k-1})$,
(i)
$ \pi_1(X\sqcup_f E^k, x_0) = \pi_1(X, x_0)$ if $ k\geq 3$.
(i)
$ \pi_1(X\sqcup_f E^2, x_0) = \pi_1(X, x_0)/\langle$   im$ \;f_*\rangle$.


nisha 2012-03-20