Theorem 26.2 (Seifert and Van Kampen - version II):

Let $ U$, $ V$ be open path connected subsets of a topological space such that $ U\cap V$ is path connected. Let $ x_0\in U\cap V$ and $ i_1:U\cap V\longrightarrow U$, $ i_2:U\cap V\longrightarrow V$ denote the inclusion maps. Then the push-out data
$ \begin{CD}
\pi_1(U\cap V, x_0) @> {i_1}_* >> \pi_1(U, x_0) \\
@V{{i_2}_*}VV @.\\
\pi_1(V, x_0) @. \\
\end{CD}$
may be completed to yield the push-out square
$ \begin{CD}
\pi_1(U\cap V, x_0) @> {i_1}_* >> \pi_1(U, x_0) \\
@V{{i_2}_*}VV @VV{{j_1}_*}V\\
\pi_1(V, x_0) @> {j_2}_* >> \pi_1(U\cup V, x_0) \\
\end{CD}$
where the maps $ j_1:U\longrightarrow U\cup V$ and $ j_2:V\longrightarrow U\cup V$ are inclusions.

The proof is neatly presented on pages 110-113 of the book by J. Vick and need not be repeated here. Instead we move on to its applications to the computation of the fundamental groups of certain spaces.


nisha 2012-03-20