Theorem 26.1 (Seifert and Van Kampen - version I):

Let $ U$, $ V$ be open path connected subsets of a topological space such that $ U\cap V$ is path connected. Let $ x_0\in U\cap V$ and $ i_1:U\cap V\longrightarrow U$, $ i_2:U\cap V\longrightarrow V$ denote the inclusion maps. Then $ \pi_1(U\cup V, x_0)$ is the free product (coproduct) of $ \pi_1(U, x_0)$ and $ \pi_1(V, x_0)$ amalgamated along $ \pi_1(U\cap V, x_0)$ with respect to the maps $ {i_1}_*$ and $ {i_2}_*$. That is to say if $ N$ is the normal subgroup

$\displaystyle N = \langle {i_1}_*[\gamma]({i_2}_*[\gamma])^{-1}:[\gamma] \in \pi_1(U\cap V, x_0) \rangle \eqno(26.1)
$

then the fundamental group of $ U\cup V$ is given by

$\displaystyle \pi_1(U\cup V, x_0) = \pi_1(U, x_0)*\pi_1(V, x_0)/N. \eqno(26.2)
$

Considering $ \pi_1(U, x_0)$ and $ \pi_1(V, x_0)$ as subgroups of $ \pi_1(U)*\pi_1(V)$, their images in the quotient group generate $ \pi_1(U\cup V, x_0)$.

The result may be elegantly stated using a push-out diagram namely,


nisha 2012-03-20