Proof:

If $ P^{\prime}$ with morphisms $ f^{\prime}_1:A_1\longrightarrow P^{\prime}$ and $ f^{\prime}_2:A_2\longrightarrow P^{\prime}$ is another candidate we may apply the universal property to get a map $ \phi:P\longrightarrow P^{\prime}$ such that

$\displaystyle \phi\circ f_1 = f^{\prime}_1,\quad \phi\circ f_2 = f^{\prime}_2.
$

Reciprocally since $ P^{\prime}$ is a push out, there is a map $ \psi:P^{\prime}\longrightarrow P$ such that

$\displaystyle \psi\circ f^{\prime}_1 = f_1,\quad \psi\circ f^{\prime}_2 = f_2.
$

Combining we see that $ (\psi\circ\phi)\circ f_1 = f_1$ and $ (\psi\circ\phi)\circ f_2 = f_2$. We see that both $ \psi\circ\phi$ and id$ _{P}$ satisfy the universal property with $ E = P$, $ g_1 = f_1$ and $ g_2 = f_2$. The uniqueness clause in the definition gives $ \psi\circ\phi =$   id$ _{P}$. Likewise we get $ \phi\circ\psi =$   id$ _{P^{\prime}}$ and the proof is complete.

nisha 2012-03-20