Definition 23.2 (Coproduct of abelian groups or the direct sum):

Given a family of abelian groups $ \{G_{\alpha}\;/\;\alpha \in \Lambda\}$, their coproduct or direct sum is an abelian group $ G$ together with a family of group homomorphisms $ \{\iota_{\alpha}:G_{\alpha}\longrightarrow G\;/\;\alpha \in \Lambda\}$ such that the following universal property holds.

Given any abelian group $ A$ and a family of group homomorphisms $ f_{\alpha}:G_{\alpha}\longrightarrow A$, there exists a unique group homomorphism $ \phi : G\longrightarrow A$ such that each of the diagrams commutes:

$\displaystyle \xymatrix{
G_{\alpha} \ar[rr]^{\iota_{\alpha}}\ar[rd]_{f_{\alpha}} & & G \ar[ld]^{\phi}\\
& A
}
$



nisha 2012-03-20