Topological structure of $ SO(4, \mathbb{R})$:

Regard $ L \in SO(4, \mathbb{R})$ as a linear transformation on the space $ \mathbb{R}^4$ of all quaternions. In particular, $ L(1)$ is a non-zero quaternion and we may define the linear map $ L^{\prime}: \mathbb{R}^4 \longrightarrow \mathbb{R}^4$ via the prescription

$\displaystyle L^{\prime}(x) = L(x)L(1)^{-1},\quad x \in \mathbb{R}^4.
$



nisha 2012-03-20