Definition 20.2 (Lens spaces):

Let $ Y = S^3 = \{(z, w) \in \mathbb{C}^2 / \vert z\vert^2 + \vert w\vert^2 = 1\}$ and $ p$ be a prime, $ q$ be an integer relatively prime to $ p$. The action of $ \mathbb{Z}_p$ on $ S^3$ given by

$\displaystyle \exp(2\pi i k/p)\cdot(z_1, z_2) = (\exp(2\pi i k/p)z_1, \exp(2\pi i kq/p)z_2)
$

is fixed point free and hence properly discontinuous. The orbit space is called the lens space denoted by $ L(p, q)$. Theorem (20.2) now implies

$\displaystyle \pi_1(L(p, q)) = \mathbb{Z}_p.
$



nisha 2012-03-20