Theorem 16.1 (path lifting lemma):

Let $ p: {\tilde X}\longrightarrow X$ be a covering projection and $ \gamma :[0, 1] \longrightarrow X$ be a path such that for some $ x_0 \in X$ and $ {\tilde x}_0 \in {\tilde X}$,

$\displaystyle \gamma(0) = x_0 = p({\tilde x}_0). \eqno(16.1)
$

Then there exists a unique path $ \tilde{\gamma}: [0, 1] \longrightarrow {\tilde X}$ such that

$\displaystyle p\circ \tilde{\gamma} = \gamma,\quad {\tilde\gamma}(0) = \tilde{x}_0\eqno(16.2)
$

Thus each path in $ X$ lifts to a unique path in $ {\tilde X}$ with a prescribed initial point in $ p^{-1}(\gamma(0))$. in

nisha 2012-03-20