Proof:

If the polynomial $ p(z) = z^n + a_1z^{n-1} + \dots + a_n$ has no zeros, then in particular, $ p(1) \neq 0$. For $ t \neq 0$, we define

$\displaystyle p(z/t)t^n = \Big(z^n + a_1z^{n-1}t + \dots + a_nt^n\Big).
$

The right hand side makes sense even when $ t = 0$ and we denote the right hand side by $ g(z, t)$. Observe that $ g(z, 0) = z^n$ and $ g(z, 1) = p(z)$. However we need a homotopy of maps of $ S^1$ preserving the base point $ 1$. To this end we modify it consider instead the map $ F:S^1\times [0, 1]\longrightarrow S^1$ given by

$\displaystyle F(z, t) = \frac{g(z, t)}{\vert g(z, t)\vert}\frac{\vert g(1, t)\vert}{g(1, t)}. \eqno(12.7)
$

Clearly $ g(z, 0)\neq 0$ for any $ z \in S^1$ and if $ 0 < t \leq 1$ then again $ g(z, t) = p(z/t)t^n \neq 0$. Thus (12.7) is a base point preserving homotopy between the function $ f : S^1 \longrightarrow S^1$ given by

$\displaystyle f(z) = \frac{p(z)}{\vert p(z)\vert}\frac{\vert p(1)\vert}{p(1)} \eqno(12.8)
$

and the map $ z \mapsto z^n$. We conclude that degree of $ f$ is $ n$. However we have a base point preserving homotopy between (12.8) and the constant map namely, $ G:S^1\times [0, 1]\longrightarrow S^1$ given by

$\displaystyle G(z, s) = \frac{p(sz)}{\vert p(sz)\vert}\frac{\vert p(s)\vert}{p(s)}.
$

We now conclude that degree of (12.8) is zero and we have a contradiction.

nisha 2012-03-20