Theorem 11.5:

Suppose that $ F$ is a homotopy between maps $ f, g : X \longrightarrow Y$ then for $ x_0 \in X$, the induced maps $ f_*: \pi_1(X, x_0)\longrightarrow \pi_1(Y, f(x_0))$ and $ g_*: \pi_1(X, x_0)\longrightarrow \pi_1(Y, g(x_0))$ satisfy the relation

$\displaystyle h_{[\sigma]}\circ f_* = g_* \eqno(11.4)
$

where $ h_{[\sigma]}$ is the isomorphism

$\displaystyle h_{[\sigma]}: [\gamma] \mapsto [\sigma*\gamma*\sigma^{-1}] \eqno(11.5)
$

we have encountered earlier with $ \sigma$ being the curve $ F(x_0, t)$ joining $ f(x_0)$ and $ g(x_0)$.

nisha 2012-03-20