Proof:

The idea of proof is simple. Observe that (11.3) is the image of the base point $ x_0$ under the deformation suggesting the use of theorem (7.8). If we fix an intermediate time $ s\in [0,1]$ then the curve $ \sigma_s$ given by $ \sigma_s(t) = t \mapsto\sigma(st)$ starts at $ y_0$ and we could use it to construct a loop at $ y_0$ namely

$\displaystyle \sigma_s*F(\gamma(\;.\;), s)*\sigma_s^{-1}
$

In detail, for each loop $ \gamma(t) \in X$ based at $ x_0$, the homotopy $ \phi:[0, 1]\times [0, 1] \longrightarrow Y$ given by
$\displaystyle \phi(s, t)$ $\displaystyle =$ $\displaystyle \sigma(3st)\;$    if $\displaystyle 0 \leq t \leq 1/3$  
  $\displaystyle =$ $\displaystyle F(\gamma(3t-1), s)\;$ if $\displaystyle 1/3\leq t\leq 2/3$  
  $\displaystyle =$ $\displaystyle \sigma(3s-3st)\;$ if $\displaystyle 2/3 \leq t\leq 1.$  

establishes the equality of $ f_*[\gamma]$ and $ [\sigma](g_{*}[\gamma])[\sigma^{-1}]$.

nisha 2012-03-20