Lemma 9.1:

Suppose that $ (X, x_0), (Y, y_0)$ and $ (Z, z_0)$ are pointed topological spaces. Let $ f: (X, x_0) \longrightarrow (Y, y_0)$ and $ g:(Y, y_0) \longrightarrow (Z, z_0)$ be continuous maps of pairs, that is continuous maps satisfying $ f(x_0) = y_0;\; g(y_0) = z_0$, then the induced homomorphisms on the respective fundamental groups satisfies

$\displaystyle (g \circ f)_\ast = g_{\ast} \circ f_{\ast}.
$

If id$ _{x} : X \longrightarrow X$ is the identity map then $ ($id$ _{x})_{\ast}=$   id$ _{\pi_1(X,x_0)}$. That is to say, the identity map on $ X$ induces the identity homomorphism on $ \pi_1(X, x_0)$.

nisha 2012-03-20