Definition 8.2 (Contravariant functor):

A contravariant functor between the two given categories $ {\cal C}_1$ and $ {\cal C}_2$ is a rule that assigns to each object $ A \in {\cal C}_1$ an object $ h(A) \in {\cal C}_2$ and to each morphism $ f \in$   Mor$ (A, B)$, where $ A, B$ are objects in $ {\cal C}_1$, a unique morphism $ h(f) \in$   Mor$ (h(B), h(A))$ such that the following conditions hold:
(i)
Given objects $ A, B$ and $ C$ in $ {\cal C}_1$ and a pair of morphisms $ f \in$   Mor$ (A, B)$, $ g \in$Mor$ (B, C)$,

$\displaystyle h(g\circ f) = h(f)\circ h(g)
$

(ii)
$ h($id$ _{A}) =$   id$ _{h(A)}$


nisha 2012-03-20