Definition 7.3 (The fundamental group $ \pi_1(X, x_0)$):

Let $ X$ be a path connected topological space and $ x_0$ be a point of $ X$. We define $ \pi_1(X, x_0)$ to be the set of all homotopy classes of paths beginning and ending at the given point $ x_0$ namely homotopy classes $ [\gamma]$ where $ \gamma: [0,1] \rightarrow X$ is continuous and $ \gamma(0) = \gamma(1) = x_0$:

$\displaystyle \pi_1(X, x_0)=\{ \;[\gamma]\;/ \gamma :[0,1] \rightarrow X$    continuous and $\displaystyle \gamma(0)=\gamma(1)=x_0\}.
$



nisha 2012-03-20