Corollary 7.4:

If $ \gamma_1^\prime,\; \gamma_1^{\prime \prime}$ are homotopic paths starting at $ \gamma_0(1)$ then $ [\gamma_0 \ast \gamma_1^\prime]= [ \gamma_0 \ast \gamma_1^{\prime \prime}].$ Likewise if $ \gamma_1$ is a path in $ X$ and $ \gamma_0^\prime ,\; \gamma_0^{\prime \prime}$ are homotopic paths whose terminal points are at $ \gamma_1(0)$ then $ \gamma_0^\prime \ast \gamma_1 \sim \gamma_0^{\prime \prime} \ast \gamma_1.$

nisha 2012-03-20