Text_Template
  Module 2: Transportation planning
Lecture 9 Modal split
  

Solution

Cost of travel by car (Equation)= $c_{car}=0.03\times20+18\times0.1+4\times0.1$ = 2.8
Cost of travel by bus (Equation)= $c_{bus}=0.03\times30+0.04\times5+0.06\times3+0.1\times6$ = 1.88
Cost of travel by train (Equation)= $c_{train}=0.03\times12+0.04\times10+0.06\times2+0.1\times4$ = 1.28
Probability of choosing mode car (Equation) $p_{ij}^{car} =\frac{e^{-2.8}}{{e^{-2.8}+e^{-1.88}+e^{-1.28}}}$ = 0.1237
Probability of choosing mode bus (Equation $p_{ij}^{bus} =\frac{e^{-1.88}}{{e^{-2.8}+e^{-1.88}+e^{-1.28}}}$ = 0.3105
Probability of choosing mode train (Equation)= $p_{ij}^{train} =\frac{e^{-1.28}}{{e^{-2.8}+e^{-1.88}+e^{-1.28}}}$ = 0.5657
Proportion of trips by car,$T_{ij}^{car}$ = 5000$\times$0.1237 = 618.5
Proportion of trips by bus, $T_{ij}^{bus}$ = 5000$\times$0.3105 = 1552.5
Similarly, proportion of trips by train, $T_{ij}^{train}$ = 5000$\times$0.5657 = 2828.5 We can put all this in the form of a table as shown below 1:
Table 1: Multinomial logit model problem: solution
  $t_{ij}^v$ $t_{ij}^{walk}$ $t_{ij}^t$ $F_{ij}$ $\phi_{ij}$ $C$ $e^C$ $p_{ij}$ $T_{ij}$
coeff 0.03 0.04 0.06 0.1 0.1 - - - -
car 20 - - 18 4 2.8 0.06 0.1237 618.5
bus 30 5 3 6 - 1.88 0.15 0.3105 1552.5
train 12 10 2 4 - 1.28 0.28 0.5657 2828.5

 $$
Fare collected from the mode bus = $T_{ij}^{bus}\times F_{ij}$ = 1552.5$\times$6 = 9315
 $$
Fare collected from mode train = $T_{ij}^{train}\times F_{ij}$ = 2828.5$\times$4 = 11314