Module 1 : APPLICATIONS OF PLANT BIOTECHNOLOGY IN CROP IMPROVEMENT

Lecture 13 : Somatic Hybridization and Cybridization

 

1. Introduction

 

Sexual hybridization since time immemorial has been used as a method for crop improvement but it has its own limitations as it can only be used within members of same species or closely related wild species. Thus, this limits the use of sexual hybridization as a means of producing better varieties. Development of viable cell hybrids by somatic hybridization, therefore, has been considered as an alternative approach for the production of superior hybrids overcoming the species barrier. The technique can facilitate breeding and gene transfer, bypassing problems associated with conventional sexual crossing such as, interspecific, intergeneric incompatibility. This technique of hybrid production via protoplast fusion allows combining somatic cells (whole or partial) from different cultivars, species or genera resulting in novel genetic combinations including symmetric somatic hybrids, asymmetric somatic hybrids or somatic cybrids.

The most common target using somatic hybridization is the gene of symmetric hybrids that contain the complete nuclear genomes along with cytoplasmic organelles of both parents. This is unlike sexual reproduction in which organelle genomes are generally contributed by the maternal parent. On the other hand, somatic cybridization is the process of combining the nuclear genome of one parent with the mitochondrial and/or chloroplast genome of a second parent. Cybrids can be produced by donor-recipient method or by cytoplast-protoplast fusion. Incomplete asymmetric somatic hybridization also provides opportunities for transfer of fragments of the nuclear genome, including one or more intact chromosomes from one parent (donor) into the intact genome of a second parent (recipient).

These methods provide genetic manipulation of plants overcoming hurdle of sexual incompatibility, thereby, serving as a method of bringing together beneficial traits from taxonomically distinct species which cannot be achieved by sexual crosses. Several parameters such as, source tissue, culture medium and environmental factors influence ability of a protoplast derived hybrid cells to develop into a fertile plant. The general steps involved in somatic hybridization and cybridization methods are elaborated in Figure 13.1 and 13.2 .

Steps involved in somatic hybridization