Module Name | Download |
---|---|
noc21_ee33_assignment_Week_1 | noc21_ee33_assignment_Week_1 |
noc21_ee33_assignment_Week_10 | noc21_ee33_assignment_Week_10 |
noc21_ee33_assignment_Week_11 | noc21_ee33_assignment_Week_11 |
noc21_ee33_assignment_Week_12 | noc21_ee33_assignment_Week_12 |
noc21_ee33_assignment_Week_2 | noc21_ee33_assignment_Week_2 |
noc21_ee33_assignment_Week_3 | noc21_ee33_assignment_Week_3 |
noc21_ee33_assignment_Week_4 | noc21_ee33_assignment_Week_4 |
noc21_ee33_assignment_Week_5 | noc21_ee33_assignment_Week_5 |
noc21_ee33_assignment_Week_6 | noc21_ee33_assignment_Week_6 |
noc21_ee33_assignment_Week_7 | noc21_ee33_assignment_Week_7 |
noc21_ee33_assignment_Week_8 | noc21_ee33_assignment_Week_8 |
noc21_ee33_assignment_Week_9 | noc21_ee33_assignment_Week_9 |
Sl.No | Chapter Name | MP4 Download |
---|---|---|
1 | Lec 01- Vector Properties: Addition, Linear Combination, Inner Product, Orthogonality, Norm | Download |
2 | Lec 02- Vectors: Unit Norm Vector, Cauchy-Schwarz inequality, Radar Application | Download |
3 | Lec 03- Inner Product Application: Beamforming in Wireless Communication Systems | Download |
4 | Lec 04- Matrices, Definition, Addition and Multiplication of Matrices | Download |
5 | Lec 05- Matrix: Column Space, Linear Independence, Rank of Matrix, Gaussian Elimination | Download |
6 | Lec 06- Matrix: Determinant, Inverse Computation, Adjoint, Cofactor Concepts | Download |
7 | Lec 07- Applications of Matrices: Solution of System of Linear equations, MIMO Wireless Technology | Download |
8 | Lec 08- Applications of Matrices: Electric Circuits, Traffic flows | Download |
9 | Lec 09- Applications of Matrices: Graph Theory, Social Networks, Dominance Directed Graph, Influential Node | Download |
10 | Lec 10- Null Space of Matrix: Definition, Rank-Nullity Theorem, Application in Electric Circuits | Download |
11 | Lec 11- Gram-Schmidt Orthogonalization | Download |
12 | Lec 12- Gaussian Random Variable: Definition, Mean, Variance, Multivariate Gaussian, Covariance Matrix | Download |
13 | Lec 13- Linear Transformation of Gaussian Random Vectors | Download |
14 | Lec 14- Machine Learning Application: Gaussian Classification | Download |
15 | Lec 15- Eigenvalue: Definition, Characteristic Equation, Eigenvalue Decomposition | Download |
16 | Lec 16- Special Matrices: Rotation and Unitary Matrices, Application: Alamouti Code | Download |
17 | Lec 17- Positive Semi-definite (PSD) Matrices: Definition, Properties, Eigenvalue Decomposition | Download |
18 | Lec 18- Positive Semidefinite Matrix: Example and Illustration of Eigenvalue Decomposition | Download |
19 | Lec 19- Machine Learning Application: Principle Component Analysis (PCA) | Download |
20 | Lec 20- Computer Vision Application: Face Recognition, Eigenfaces | Download |
21 | Lec 21- Least Squares (LS) Solution, Pseudo-Inverse Concept | Download |
22 | Lec 22- Least Squares (LS) via Principle of Orthogonality, Projection Matrix, Properties | Download |
23 | Lec 23- Application: Pseudo-Inverse and MIMO Zero Forcing (ZF) Receiver | Download |
24 | Lec 24- Wireless Application: Multi-Antenna Channel Estimation | Download |
25 | Lec 25- Machine Learning Application: Linear Regression | Download |
26 | Lec 26- Computation Mathematics Application: Polynomial Fitting | Download |
27 | Lec 27- Least Norm Solution | Download |
28 | Lec 28- Wireless Application: Multi-user Beamforming | Download |
29 | Lec 29- Singular Value Decomposition (SVD): Definition, Properties, Example | Download |
30 | Lec 30- SVD Application in MIMO Wireless Technology: Spatial-Multiplexing and High Data Rates | Download |
31 | Lec 31- SVD for MIMO wireless optimization, water-filling algorithm, optimal power allocation | Download |
32 | Lec 32- SVD application for Machine Learning: Principal component analysis (PCA) | Download |
33 | Lec 33- Multiple signal classification (MUSIC) algorithm: system model | Download |
34 | Lec 34- MUSIC algorithm for Direction of Arrival (DoA) estimation | Download |
35 | Lec 35- Linear minimum mean square error (LMMSE) principle | Download |
36 | Lec 36- LMMSE estimate and error covariance matrix | Download |
37 | Lec 37- LMMSE estimation in linear systems | Download |
38 | Lec 38- LMMSE application: Wireless channel estimation and example | Download |
39 | Lec 39- Time-series prediction via auto-regressive (AR) model | Download |
40 | Lec 40- Recommender system: design and rating prediction | Download |
41 | Lec 41- Recommender system: Illustration via movie rating prediction example | Download |
42 | Lec 42- Fast Fourier transform (FFT) and Inverse fast Fourier transform (IFFT) | Download |
43 | Lec 43- IFFT/ FFT application in Orthogonal Frequency Division Multiplexing (OFDM) wireless technology | Download |
44 | Lec 44- OFDM system: Circulant matrices and properties | Download |
45 | Lec 45- OFDM system model: Transmitter and receiver processing | Download |
46 | Lec 46- Single-carrier frequency division for multiple access (SC-FDMA) technology | Download |
47 | Lec 47- Linear dynamical systems: definition and solution via matrix exponential | Download |
48 | Lec 48- Linear dynamical systems: matrix exponential via SVD | Download |
49 | Lec 49- Machine Learning application: Support Vector Machines (SVM) | Download |
50 | Lec 50- Support Vector Machines (SVM): Problem formulation via maximum hyperplane separation | Download |
51 | Lec 51- Sparse regression: problem formulation and relation to Compressive Sensing (CS) | Download |
52 | Lec 52- Sparse regression: solution via the Orthogonal Matching Pursuit (OMP) algorithm | Download |
53 | Lec 53- OMP Example for Sparse Regression | Download |
54 | Lec 54- Machine Learning Application: Clustering | Download |
55 | Lec 55- K-Means Clustering algorithm | Download |
56 | Lec 56- Introduction to Stochastic Processes and Markov Chains | Download |
57 | Lec 57- Discrete Time Markov Chains and Transition Probability Matrix | Download |
58 | Lec 58- Discrete Time Markov Chain Examples | Download |
59 | Lec 59- m-STEP Transition Probabilities for Discrete Time Markov Chains | Download |
60 | Lec 60- Limiting Behavior of Discrete Time Markov Chains | Download |
61 | Lec 61- Least Squares Revisited: Rank Deficient Matrix | Download |
62 | Lec 62- Least Squares using SVD | Download |
63 | Lec 63- Weighted Least Squares | Download |
64 | Lec 64- Weighted Least Squares Example | Download |
65 | Lec 65- Woodbury Matrix Identity - Matrix Inversion Lemma | Download |
66 | Lec 66- Woodbury Matrix Identity - Proof | Download |
67 | Lec 67- Conditional Gaussian Density - Mean | Download |
68 | Lec 68- Conditional Gaussian Density - Covariance | Download |
69 | Lec 69- Scalar Linear Model for Gaussian Estimation | Download |
70 | Lec 70- MMSE Estimate and Covariance for the Scalar Linear Model | Download |
Sl.No | Chapter Name | English |
---|---|---|
1 | Lec 01- Vector Properties: Addition, Linear Combination, Inner Product, Orthogonality, Norm | Download Verified |
2 | Lec 02- Vectors: Unit Norm Vector, Cauchy-Schwarz inequality, Radar Application | Download Verified |
3 | Lec 03- Inner Product Application: Beamforming in Wireless Communication Systems | Download Verified |
4 | Lec 04- Matrices, Definition, Addition and Multiplication of Matrices | Download Verified |
5 | Lec 05- Matrix: Column Space, Linear Independence, Rank of Matrix, Gaussian Elimination | Download Verified |
6 | Lec 06- Matrix: Determinant, Inverse Computation, Adjoint, Cofactor Concepts | Download Verified |
7 | Lec 07- Applications of Matrices: Solution of System of Linear equations, MIMO Wireless Technology | Download Verified |
8 | Lec 08- Applications of Matrices: Electric Circuits, Traffic flows | Download Verified |
9 | Lec 09- Applications of Matrices: Graph Theory, Social Networks, Dominance Directed Graph, Influential Node | Download Verified |
10 | Lec 10- Null Space of Matrix: Definition, Rank-Nullity Theorem, Application in Electric Circuits | Download Verified |
11 | Lec 11- Gram-Schmidt Orthogonalization | PDF unavailable |
12 | Lec 12- Gaussian Random Variable: Definition, Mean, Variance, Multivariate Gaussian, Covariance Matrix | PDF unavailable |
13 | Lec 13- Linear Transformation of Gaussian Random Vectors | PDF unavailable |
14 | Lec 14- Machine Learning Application: Gaussian Classification | PDF unavailable |
15 | Lec 15- Eigenvalue: Definition, Characteristic Equation, Eigenvalue Decomposition | PDF unavailable |
16 | Lec 16- Special Matrices: Rotation and Unitary Matrices, Application: Alamouti Code | PDF unavailable |
17 | Lec 17- Positive Semi-definite (PSD) Matrices: Definition, Properties, Eigenvalue Decomposition | PDF unavailable |
18 | Lec 18- Positive Semidefinite Matrix: Example and Illustration of Eigenvalue Decomposition | PDF unavailable |
19 | Lec 19- Machine Learning Application: Principle Component Analysis (PCA) | PDF unavailable |
20 | Lec 20- Computer Vision Application: Face Recognition, Eigenfaces | PDF unavailable |
21 | Lec 21- Least Squares (LS) Solution, Pseudo-Inverse Concept | Download Verified |
22 | Lec 22- Least Squares (LS) via Principle of Orthogonality, Projection Matrix, Properties | PDF unavailable |
23 | Lec 23- Application: Pseudo-Inverse and MIMO Zero Forcing (ZF) Receiver | PDF unavailable |
24 | Lec 24- Wireless Application: Multi-Antenna Channel Estimation | PDF unavailable |
25 | Lec 25- Machine Learning Application: Linear Regression | PDF unavailable |
26 | Lec 26- Computation Mathematics Application: Polynomial Fitting | PDF unavailable |
27 | Lec 27- Least Norm Solution | PDF unavailable |
28 | Lec 28- Wireless Application: Multi-user Beamforming | PDF unavailable |
29 | Lec 29- Singular Value Decomposition (SVD): Definition, Properties, Example | PDF unavailable |
30 | Lec 30- SVD Application in MIMO Wireless Technology: Spatial-Multiplexing and High Data Rates | PDF unavailable |
31 | Lec 31- SVD for MIMO wireless optimization, water-filling algorithm, optimal power allocation | PDF unavailable |
32 | Lec 32- SVD application for Machine Learning: Principal component analysis (PCA) | PDF unavailable |
33 | Lec 33- Multiple signal classification (MUSIC) algorithm: system model | PDF unavailable |
34 | Lec 34- MUSIC algorithm for Direction of Arrival (DoA) estimation | PDF unavailable |
35 | Lec 35- Linear minimum mean square error (LMMSE) principle | PDF unavailable |
36 | Lec 36- LMMSE estimate and error covariance matrix | PDF unavailable |
37 | Lec 37- LMMSE estimation in linear systems | PDF unavailable |
38 | Lec 38- LMMSE application: Wireless channel estimation and example | PDF unavailable |
39 | Lec 39- Time-series prediction via auto-regressive (AR) model | PDF unavailable |
40 | Lec 40- Recommender system: design and rating prediction | PDF unavailable |
41 | Lec 41- Recommender system: Illustration via movie rating prediction example | PDF unavailable |
42 | Lec 42- Fast Fourier transform (FFT) and Inverse fast Fourier transform (IFFT) | PDF unavailable |
43 | Lec 43- IFFT/ FFT application in Orthogonal Frequency Division Multiplexing (OFDM) wireless technology | PDF unavailable |
44 | Lec 44- OFDM system: Circulant matrices and properties | PDF unavailable |
45 | Lec 45- OFDM system model: Transmitter and receiver processing | PDF unavailable |
46 | Lec 46- Single-carrier frequency division for multiple access (SC-FDMA) technology | PDF unavailable |
47 | Lec 47- Linear dynamical systems: definition and solution via matrix exponential | PDF unavailable |
48 | Lec 48- Linear dynamical systems: matrix exponential via SVD | PDF unavailable |
49 | Lec 49- Machine Learning application: Support Vector Machines (SVM) | PDF unavailable |
50 | Lec 50- Support Vector Machines (SVM): Problem formulation via maximum hyperplane separation | PDF unavailable |
51 | Lec 51- Sparse regression: problem formulation and relation to Compressive Sensing (CS) | PDF unavailable |
52 | Lec 52- Sparse regression: solution via the Orthogonal Matching Pursuit (OMP) algorithm | PDF unavailable |
53 | Lec 53- OMP Example for Sparse Regression | PDF unavailable |
54 | Lec 54- Machine Learning Application: Clustering | PDF unavailable |
55 | Lec 55- K-Means Clustering algorithm | PDF unavailable |
56 | Lec 56- Introduction to Stochastic Processes and Markov Chains | PDF unavailable |
57 | Lec 57- Discrete Time Markov Chains and Transition Probability Matrix | PDF unavailable |
58 | Lec 58- Discrete Time Markov Chain Examples | PDF unavailable |
59 | Lec 59- m-STEP Transition Probabilities for Discrete Time Markov Chains | PDF unavailable |
60 | Lec 60- Limiting Behavior of Discrete Time Markov Chains | PDF unavailable |
61 | Lec 61- Least Squares Revisited: Rank Deficient Matrix | PDF unavailable |
62 | Lec 62- Least Squares using SVD | PDF unavailable |
63 | Lec 63- Weighted Least Squares | PDF unavailable |
64 | Lec 64- Weighted Least Squares Example | PDF unavailable |
65 | Lec 65- Woodbury Matrix Identity - Matrix Inversion Lemma | PDF unavailable |
66 | Lec 66- Woodbury Matrix Identity - Proof | PDF unavailable |
67 | Lec 67- Conditional Gaussian Density - Mean | PDF unavailable |
68 | Lec 68- Conditional Gaussian Density - Covariance | PDF unavailable |
69 | Lec 69- Scalar Linear Model for Gaussian Estimation | PDF unavailable |
70 | Lec 70- MMSE Estimate and Covariance for the Scalar Linear Model | PDF unavailable |
Sl.No | Language | Book link |
---|---|---|
1 | English | Not Available |
2 | Bengali | Not Available |
3 | Gujarati | Not Available |
4 | Hindi | Not Available |
5 | Kannada | Not Available |
6 | Malayalam | Not Available |
7 | Marathi | Not Available |
8 | Tamil | Not Available |
9 | Telugu | Not Available |