Table 5 | |||||||
Initial x | Initial y | Stepsize h | Appx. Y | Exa. Y | Error | k1 | k2 |
0.00000 | 1.00000 | 0.10000 | 1.00000 | 1.00000 | 0.00000 | 0.1 | 0.121 |
0.1000000 | 1.00000 | 0.10000 | 1.1105 | 1.11111 | 0.00061 | 0.1 | 0.146531 |
0.2000000 | 1.11050 | 0.10000 | 1.233765513 | 1.25000 | 0.01623 | 0.123321 | 0.184168 |
0.3000000 | 1.23377 | 0.10000 | 1.387510219 | 1.42857 | 0.04106 | 0.152218 | 0.237076 |
0.4000000 | 1.38751 | 0.10000 | 1.582157194 | 1.66667 | 0.08451 | 0.192518 | 0.314947 |
0.5000000 | 1.58216 | 0.1000000 | 1.835890108 | 2.00000 | 0.16411 | 0.250322 | 0.006266 |
Table 6 | |||||||
Initial x | Initial y | Stepsize h | Appx. Y | Exa. Y | Error | k1 | k2 |
0 | 1 | 0.05 | 1 | 1 | 0 | 0.05 | 0.055125 |
0.05 | 1 | 0.05 | 1.0525625 | 1.052631579 | -6.9079E-05 | 0.055394 | 0.061378 |
0.1 | 1.0525625 | 0.05 | 1.110948907 | 1.111111111 | -0.0001622 | 0.06171 | 0.068756 |
0.15 | 1.110948907 | 0.05 | 1.176182339 | 1.176470588 | -0.00028825 | 0.06917 | 0.077545 |
0.2 | 1.176182339 | 0.05 | 1.249540038 | 1.25 | -0.00045996 | 0.078068 | 0.088127 |
0.25 | 1.249540038 | 0.05 | 1.332637341 | 1.333333333 | -0.00069599 | 0.088796 | 0.101024 |
0.3 | 1.332637341 | 0.05 | 1.427547224 | 1.428571429 | -0.0010242 | 0.101895 | 0.11696 |
0.35 | 1.427547224 | 0.05 | 1.536974305 | 1.538461538 | -0.00148723 | 0.118115 | 0.136966 |
0.4 | 1.536974305 | 0.05 | 1.664514529 | 1.666666667 | -0.00215214 | 0.13853 | 0.162549 |
0.45 | 1.664514529 | 0.05 | 1.815054023 | 1.818181818 | -0.0031278 | 0.164721 | 0.195975 |
0.5 | 1.815054023 | 0.05 | 1.995402285 | 2 | -0.00459772 | 0.199082 | 0.240788 |
Table 7 | |||||||
Initial x | Initial y | Stepsize h | Appx. Y | Exa. Y | Error | k1 | k2 |
0 | 1 | 0.025 | 1 | 1 | 0 | 0.025 | 0.026266 |
0.025 | 1 | 0.025 | 1.025625 | 1.025641026 | -1.6026E-05 | 0.026298 | 0.027664 |
0.05 | 1.025625 | 0.025 | 1.051923467 | 1.052631579 | -0.00070811 | 0.027664 | 0.029138 |
0.075 | 1.051923467 | 0.025 | 1.078930846 | 1.081081081 | -0.00215023 | 0.029102 | 0.030693 |
0.1 | 1.078930846 | 0.025 | 1.106685431 | 1.111111111 | -0.00442568 | 0.030619 | 0.032337 |
0.125 | 1.106685431 | 0.025 | 1.135228679 | 1.142857143 | -0.00762846 | 0.032219 | 0.034073 |
0.15 | 1.135228679 | 0.025 | 1.164605572 | 1.176470588 | -0.01186502 | 0.033908 | 0.035911 |
0.175 | 1.164605572 | 0.025 | 1.194865028 | 1.212121212 | -0.01725618 | 0.035693 | 0.037857 |
0.2 | 1.194865028 | 0.025 | 1.226060373 | 1.25 | -0.02393963 | 0.037581 | 0.03992 |
0.225 | 1.226060373 | 0.025 | 1.258249888 | 1.290322581 | -0.03207269 | 0.03958 | 0.042109 |
0.25 | 1.258249888 | 0.025 | 1.291497448 | 1.333333333 | -0.04183589 | 0.041699 | 0.044435 |
0.275 | 1.291497448 | 0.025 | 1.32587326 | 1.379310345 | -0.05343709 | 0.043948 | 0.04691 |
0.3 | 1.32587326 | 0.025 | 1.361454731 | 1.428571429 | -0.0671167 | 0.046339 | 0.049547 |
0.325 | 1.361454731 | 0.025 | 1.398327491 | 1.481481481 | -0.08315399 | 0.048883 | 0.05236 |
0.35 | 1.398327491 | 0.025 | 1.436586603 | 1.538461538 | -0.10187494 | 0.051595 | 0.055367 |
0.375 | 1.436586603 | 0.025 | 1.476338004 | 1.6 | -0.123662 | 0.054489 | 0.058586 |
0.4 | 1.476338004 | 0.025 | 1.517700238 | 1.666666667 | -0.14896643 | 0.057585 | 0.062038 |
0.425 | 1.517700238 | 0.025 | 1.560806538 | 1.739130435 | -0.1783239 | 0.060903 | 0.065749 |
0.45 | 1.560806538 | 0.025 | 1.605807372 | 1.818181818 | -0.21237445 | 0.064465 | 0.069745 |
0.475 | 1.605807372 | 0.025 | 1.652873554 | 1.904761905 | -0.25188835 | 0.0683 | 0.074061 |
0.5 | 1.652873554 | 0.025 | 1.702200096 | 2 | -0.2977999 | 0.072437 | 0.078733 |
FLOWCHART
Remark. The local error in the Algorithm 3.3 is
. To achieve this error, we are forced to more computation
or in other words spend time to compute
and
.
It all depends on the nature of the function to estimate the time
consumed for the computation. The cost we pay for higher accuracy
is more computation. Also, to reduce the local error, we need
smaller values of the step size h, which again results in large
number of computation. Each computation leads to move of rounding
errors. In other words, reduction in discretization error may lead
to increase in rounding off error. The moral is that the
indiscriminate reduction of step-size need not mean more accuracy.