Exercises:
  1. Prove the following:
    a) $\vert\vert x\vert\vert _{\infty} \leq \vert\vert x\vert\vert _{1}\leq n\vert\vert x\vert\vert _{\infty}$
    b) $\vert\vert x\vert\vert _{\infty} \leq \vert\vert x\vert\vert _{2}\leq
\sqrt{n}\vert\vert x\vert\vert _{\infty}$
  2. Let A be a real non singular matrix of order n, and let $\vert\vert.\vert\vert _{\upsilon}$ denote a vector norm on $R^n$. Define

    \begin{displaymath}\vert\vert x\vert\vert _{*}=\vert\vert Ax\vert\vert _{\upsilon} \qquad\qquad x\, \epsilon \, R^n\end{displaymath}

    Show that $\vert\vert.\vert\vert _{*}$ is a vector norm on $R^n$.
  3. Let          $A(\alpha)=\left[%
\begin{array}{cc}
0.1\alpha & 0.1\alpha \\
1.0 & 1.5 \\
\end{array}%
\right]$
    Determine $\alpha$ such that Cond$(A(\alpha))$ is minimised. Use the maximum norm.
  4. Solve the following systems
    1. $4x_1+x_2+x_3=4$
      $x_1+4x_2-2x_3=4$
      $3x_1+2x_2-4x_3=6$
    2. $x_1+x_2-x_3=2$
      $2x_1+3x_2+5x_3=-3$
      $3x_1+2x_2-3x_3=6$
    by Gauss elimination i) without pivoting and ii) with partial pivoting.
  5. Find the Inverse of the matrix

    \begin{displaymath}\left[%
\begin{array}{ccc}
1 & 2 & 1 \\
2 & 3 & -1 \\
2 & -1 & 3 \\
\end{array}%
\right]
\end{displaymath}

    by Gauss-Jordan method.
  6. The following system of equation is given

    \begin{displaymath}4x+y+2z=4\end{displaymath}


    \begin{displaymath}3x+5y+z=7\end{displaymath}


    \begin{displaymath}x+y+3z=3\end{displaymath}

    1. Set up the Jacobi and Gauss-Seidel iterative schemes for the solution and iterate three times starting with the initial vector $x^{(0)}=0$. Compare with the exact solution.
  7. The system of equations $Ax=b$ is to be solved iteratively by

    \begin{displaymath}x_{n+1}=Mx_n+b\end{displaymath}

    Suppose $A=\left[%
\begin{array}{cc}
1 & k \\
2k & 1 \\
\end{array}%
\right]$, $k \neq \frac{\sqrt{2}}{2}$, k is real.
    1. Find a necessary and sufficient condition on k for convergence of the Jacobi method.
  8. Consider the tridiagonal matrix given by

    \begin{displaymath}A=\left[%
\begin{array}{ccccc}
4 & 1 & & & \\
1 & 4 & 1...
... \\
& & 1 & 4 & 1 \\
& & & & 4 \\
\end{array}%
\right]\end{displaymath}

    Show that A is nonsingular. Find a bound for $\vert\vert A^{-1}\vert\vert _{\infty}$ and $\vert\vert A^{-1}\vert\vert _2$.
  9. Show using elimination that the following system does not have a solution:

    \begin{displaymath}x_1+2x_2+x_3=3\end{displaymath}


    \begin{displaymath}2x_1+3x_2+x_3=5\end{displaymath}


    \begin{displaymath}3x_1+5x_2+2x_3=1\end{displaymath}

  10. For the system $Ax=b$ with

    \begin{displaymath}A=\left[%
\begin{array}{ccc}
5 & 6 & 7 \\
6 & 5 & 6 \\
7 & 5 & 6 \\
\end{array}%
\right]\end{displaymath}

    1. Find det.(A) and $\vert\vert A\vert\vert$. Is A ill-Conditioned?
    2. For $b=(18,17,18)$, the solution is $x=(1,1,1)$. Solve the system for the vectors $b=(17,17,17)$ and $b=(18.2,17.2,18.2)$ and observe how the solution change.